Wstęp

Celem zajęć jest zapoznanie z tworzeniem siatek z wykorzystaniem programu "**Gmsh**". Program ten jest rozwijanym na licencji GNU oprogramowaniem do tworzenia siatek obliczeniowych. Program składa się z czterech modułów:

• Moduł opisu geometrii (*geometry description*) – tworzymy ogólny kształt obszaru obliczeniowego.

• Moduł siatki (*meshing*) – tworzymy siatkę elementów dla utworzonego obszaru obliczeniowego.

• Moduł obliczeniowy (*solving*) – Gmsh pozwala na rozwiązywanie pewnej klasy zadań.

Moduł post-processing-u – wizualizacja i opracowanie wyników.
 W trakcie laboratorium wykorzystane zostaną tylko moduły do tworzenia obszaru obliczeniowego oraz podziału na elementy. Program można pobrać ze strony twórców (różne wersje i warianty):

Laboratoria rozpoczynają się od pobrania programu Gmsh na wybrany system operacyjny, w tym przypadku Windows.

Po uruchomieniu i zapoznaniu się z interfejsem dokonujemy podstawowe j konfiguracji poprzez zaznaczenie w **Tools/Options/Geometry/Visibility** wszystkich opcji z wyjątkiem **'Volume labels'**, po tym tworzona jest pierwsza siatka.

Powstaje ona poprzez utworzenie punktów

[Geometry \rightarrow Elementary entities \rightarrow Add \rightarrow Points]

o podanych współrzędnych

Х	Y	Z
0	0	0
2	0	0
2	2	0
1	2	0
1	1	0
0	1	0

Następnie dodawane są linie pomiędzy puntami

[Geometry \rightarrow Elementary entities \rightarrow Add \rightarrow Line]

Na koniec dodawane są ściany

[Geometry \rightarrow Elementary entities \rightarrow Add \rightarrow Plane surface]

W efekcie powstaje przedstawiona siatka

Ze stworzonej siatki 2D, tworzymy obiekt 3D, poprzez narzędzie

[Geometry → Elementary entities → Extrude → Translate]

Elementary Opera	tion Context		—		\times
Translate Rotate	Scale Symmetry	Boolean F	illet De	lete	
0	DX				
0	DY				
1	DZ				
Apply translation on copy					
Extrude mesh					
4	Mesh layers	Recombin	ne		
All entities 🔹	Selection mode				

Otwiera się okno w którym ustawiamy ilość warstw Mesh (**Mesh layers**), na liczbę z przedziału 3-5, w tym wypadku 4, oraz ustawienie opcji **Extrude mesh**

Dodatkowo odpalamy opcję [Mesh → 3D]

Na koniec eksportujemy efekt pracy do pliku w formacie NASTRAN

Po czym tworzymy obiekt 3D ponownie, jednak tym razem bez opcji **'Extrude mesh'** W analogiczny sposób tworzone są siatki na podstawie plików siatka_Ax.png i siatka_B.png

Obszar można podzielić na trójkątne elementy poprzez opcję, oraz ustawiając wybraną wartość Element size

[Mesh \rightarrow Define \rightarrow Size at points]

Element size: 0.1 – 0.8

Taki obiekt należy wyeksportować do pliku typu NASTRAN

W pliku, pas powippy zpaidować się obiekty:	GRID	27	0	0.905	2401.291	9260.00	+00	
w pliku ilas powilily zliajuować się obiekty.	GRID	28	0	0.001	7641.132	0940.00	:+00	
 GRID – kolejne punkty i ich współrzędne 	GRID	29	0	-0.034000.6798600.00E+00				
CBAR – koleine krawedzie zewnetrzne	GRID	30	0	1.3406861.1398170.00E+00				
	GRID	31	0	-0.371821.3145360.00E+00			0	
elementow slatki (tylko	CBAR	9	1	õ	9	0.	0.	0.
krawędzie elementów odpowiadające	CBAR	10	2	7	10	0.	0. 0.	0. 0.
krawedziom zewnetrznym	CBAR	12	2	10	6	0.	0.	0.
	CBAR	13	3	6	11	0.	0.	0.
zadanego obszaru)	CBAR	14	3	11	5	0.	0.	0.
 trzecia kolumna podaje, której krawędzi 	CBAR	15	4	5	12	0.	0.	0.
obszaru								
geometrycznego odpowiada krawędź siatki z								
elementami – jak	CBAR	21	7	2	15	0.	0.	0.
	CBAR	22	/	15	1	0.	0.	0.
widać np. krawędzi obszaru 1 odpowiadają	CBAR	23	ð	16	16	0.	0.	0.
dwie krawędzie	CTRIA3	24	1	25	26	19	0.	0.
elementowe (7 i 8) – w efekcie obie te	CTRIA3	26	1	26	27	19		
	CTRIA3	27	1	12	24	5		
krawędzie	CTRIA3	28	1	24	27	23		
elementowe beda miały numer warunku	CTRIA3	29	1	21	27	24		
brzegowego 1								

CTRIA3 – trójkąty siatki

Wnioski

Program Gmsh może być wykorzystywany do tworzenia siatek obiektów 2D i 3D. Siatka ta może mieć różny wygląd dla tego samego obiektu, zależnie od preferowanych opcji, składa się z trójkątnych elementów, których rozmiar może być modyfikowany, w sposób równomierny lub gradientowy. Programowi brakuje podstawowych opcji takich jak zapisywanie jako nowy plik, cofanie, dlatego powinien być wykorzystywany jedynie dla nieskomplikowanych siatek.

Zadanie tworzenie siatki w programie Gmsh	OCENA własna w % (0-100)	OCENA prowadzącego w % (0-100)
Zad. 3.5 a – utworzenie geometrii 3D obszaru obliczeniowego	100%	
Zad. 3.5 b – utworzenie prostej siatki 3D z elementami pryzmatycznymi	100%	
Zad. 3.5 c – utworzenie prostej siatki 3D z elementami czworościennymi	100%	
Zad. 3.6 a – utworzenie siatki 2D, z grupy A, wybrana siatka:	100%	
Zad. 3.6 b – utworzenie siatki 2D, obiekt B	100%	
ŁĄCZNIE (500):	500	
OCENA KOŃCOWA:		