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1.1 FINITE ELEMENTS IN FLUID DYNAMICS

Introduced in the late 1950s in the aircraft industry, see, for instance, the historical
outline by Felippa (2001), the finite element method (FEM) has emerged as one of
the most powerful numerical methods so far devised. Among the basic attributes
of the method which have led to its widespread acceptance and use are the ease in
modeling complex geometries, the consistent treatment of differential-type boundary
conditions and the possibility to be programmed in a flexible and general purpose
format.

Standard finite element approximations are based upon the Galerkin formulation of
the method of weighted residuals. This formulation has proven eminently successful
in application to problems in solid/structural mechanics and in other situations, such
as heat conduction, governed by diffusion-type equations. The reason for this success
is that, when applied to problems governed by self-adjoint elliptic or parabolic partial
differential equations, the Galerkin finite element method leads to symmetric stiffness
matrices. In this case the difference between the finite element solution and the exact
solution is minimized with respect to the energy norm, see, for instance, Strang and
Fix (1973). In practice, the Galerkin formulation is optimal in problems governed by
self-adjoint equations. In such cases, there exists a quadratic functional the minimum
of which corresponds to satisfying the partial differential equation governing the
problem at hand. For instance, in linear elasticity the equilibrium position of a
structure corresponds to the minimum of the quadratic functional expressing the
total potential energy of the system. Similarly, in steady heat conduction problems
the thermal equilibrium resulting from satisfying the Laplace or Poisson equation
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2 INTRODUCTION AND PRELIMINARIES

corresponds to the minimum of a quadratic functional expressed in terms of the
thermal flux, which physically represents the total thermal energy of the system.

The success of the Galerkin finite element method in structural mechanics, heat
conduction and other problems of the potential type provided, in the early 1970s,
a strong impetus for the utilization of the method in the simulation of problems in
fluid dynamics. It was thought that the significant advantages gained in structural
mechanics and diffusion-type problems would again be open to exploitation in the
area of fluid flow simulation. Actually, this proved to be an optimistic point of view,
especially with regard to modeling convection-dominated transport phenomena.

The main difficulty was due to the presence of convection operators in the for-
mulation of flow problems based on kinematical descriptions other than Lagrangian.
Convection operators are, in fact, non-symmetric and thus the best approximation
property in the energy norm of the Galerkin method, which is the basis for success in
symmetric cases, is lost when convection dominates the transport process.

In practice, solutions to convection-dominated transport problems by the Galerkin
method are often corrupted by spurious node-to-node oscillations. These can only
be removed by severe mesh (and time-step) refinement which clearly undermine the
practical utility of the method. This has motivated the development of alternatives
to the standard Galerkin formulation which preclude oscillations without requiring
mesh or time-step refinement. Such alternatives are called stabilization techniques
and have provided a major breakthrough in finite element modeling of problems in
fluid dynamics.

In truly transient situations, another important issue is to ensure the proper cou-
pling between spatial and temporal approximations. In fact, a stable and accurate
spatial representation will be quickly spoiled if the algorithm used for transporting
the solution in time is not of comparable accuracy. Space-time coupling is indeed
particularly crucial when convection dominates the transport process, due to the di-
rectional character of propagation of information in hyperbolic problems. Significant
progress has also been achieved in recent years in the development of algorithms for
accurately tracing the transient solution of highly convective transport problems.

1.2 SUBJECTS COVERED

The purpose of this book is to describe methods of finite element analysis for steady
and time-dependent convection-diffusion and fluid dynamics problems. The intent
is to provide an introduction to a variety of modern methods, while preserving a
pedagogical character through the presentation of simple worked examples.

The present chapter starts with a review of the basic kinematical descriptions
used in fluid mechanics and recalls the conservation laws for mass, momentum and
energy in differential and integral forms. It then provides an introduction to the basic
ingredients of the finite element analysis of flow problems.

Chapter 2 introduces stabilized finite element methods for steady convection-
dominated transport problems (elliptic equations). The difficulties of Galerkin finite
elements are first recognized. This allows the design of possible cures for the node-



SUBJECTS COVERED 3

to-node oscillations. The first alternative formulations proposed in the early 1970s to
improve the standard Galerkin method tried to reproduce in the finite element context
the effect of upwind differencing used in the finite difference context to stabilize the
oscillatory results obtained by central difference approximations. These early, but
not fully satisfactory, developments were quickly followed by more convincing finite
element procedures, such as the Streamline-Upwind Petrov-Galerkin (SUPG) and
the Galerkin/Least-squares (GLS) methods. Such methods do enjoy interesting sta-
bility and consistency properties and are nowadays widely used by the finite element
community for solving convection-dominated transport problems.

After presenting the difficulties and remedies of Galerkin finite elements in steady
convection-dominated problems, transient problems are introduced. In fact, Chapter
3 is devoted to pure convection. The scalar linear first-order hyperbolic equation
allows discussion of time-dependent situations. In these problems, the objective has
been to develop spatially stable and time-accurate finite element methods that take
into account the role of the characteristics in the wave-like solution of hyperbolic
equations. This has favored the development of solution algorithms in which at-
tention is focused on achieving a proper coupling between the spatial discretization
provided by the finite element method and the time discretization. Methods in this
class include various characteristic Galerkin techniques, some classical time-stepping
schemes and Taylor-Galerkin methods. The concept of accuracy and numerical sta-
bility is introduced. Moreover, spatial formulations especially suited for hyperbolic
problems (least-squares and discontinuous Galerkin) are also introduced. A simple
model problem also motivates a brief introduction to more recent techniques such as
space-time formulations.

Engineering practice goes beyond linear scalar equations. Chapter 4 extends the
concepts of the previous chapter to systems of nonlinear equations. In fact, it is con-
cerned with a particular problem: the finite element modeling of inviscid compressible
flows governed by the Euler equations of gas dynamics. Moreover, this extension
allows discussion of the specificities of numerical methods to capture shocks. First,
a brief review of the basic mathematical properties of nonlinear hyperbolic equations
is presented. Second, a simple two-step procedure is introduced for the explicit inte-
gration of the governing conservation equations of mass, momentum and energy. It
ensures second-order accuracy in the smooth part of the flow and, at the same time,
allows easy incorporation of a modulated dissipation to avoid oscillatory results in the
vicinity of shocks and other discontinuities in the flow. Then, various high-resolution
shock-capturing techniques are described and their implementation in the finite el-
ement context is illustrated by several worked examples. The chapter closes with
a discussion on the use of the Arbitrary Lagrangian-Eulerian (ALE) description for
the finite element simulation of problems involving fluid-structure interaction. Both
academic and industrial examples are proposed to illustrate the flexibility of the ALE
technique in the modeling of coupled transient dynamic problems.

Once the basis of time integration (hyperbolic equations), Chapters 3 and 4, and
spatial stabilization in steady problems (elliptic equations), Chapter 2, have been
discussed, both methodologies converge in transient convection-diffusion problems
(parabolic equations). Chapter 5 is still concerned with accurate time integration but



4 INTRODUCTION AND PRELIMINARIES

has to deal with the second-order spatial operator introduced by the diffusion. This
allows the incorporation in the transient schemes of the spatial stabilization introduced
in Chapter 2, and, moreover, discussion of specific time integration techniques for
convection-diffusion problems in order to obtain high-order accurate schemes.

The generalization to nonlinear systems of equations is done in Chapter 6. It
provides an introduction to the finite element modeling of incompressible viscous
flows governed by the Navier-Stokes equations. And consequently, apart from the
numerical difficulties due to the presence of the nonlinear convective term, the incom-
pressibility condition is also a major issue in this chapter. The problem is formulated
in the primitive variables, namely velocity and pressure. Mixed and penalty methods
in the framework of Stokes and Navier-Stokes equations are introduced. And a brief
account is given of stabilization procedures capable of rendering convergent mixed
finite element formulations which are unstable in the traditional Galerkin approach.
To treat unsteady incompressible flows, a basic fractional-step projection method is
introduced and some variants of it are discussed. Emphasis is placed on the treatment
of the boundary conditions in each step of the time integration procedure and on the
stable treatment of the pressure/incompressibility phase. The chapter closes with
applications of the fractional-step method to forced and natural convection problems.

1.3 KINEMATICAL DESCRIPTIONS OF THE FLOW FIELD

In this section and the next one we summarize the continuum mechanics concepts that
are needed for the mathematical description of flow problems. Classical references
for the basic theory of fluid mechanics are Batchelor (1999), Landau and Lifshitz
(1959) and Lamb (1993).

An important consideration when simulating fluid flow problems by any numerical
method is the choice of an appropriate kinematical description of the flow field. The
algorithms of continuum mechanics make use of three distinct types of description of
motion: the Lagrangian description, the Eulerian description and the ALE description.

Lagrangian algorithms, in which each individual node of the computational mesh
follows the associated material particle during motion, are mainly used in structural
mechanics. Classical applications of the Lagrangian description in large deforma-
tion problems are the simulation of vehicle crash tests and the modeling of metal
forming operations. In these applications, the Lagrangian algorithms are used in
combination with both solid and structural (beam, plate, shell) elements. Numeri-
cal solutions are often characterized by large displacements and deformations and
history-dependent constitutive relations are employed to describe elasto-plastic and
visco-plastic material behavior. The Lagrangian description allows easy tracking of
free surfaces and interfaces between different materials. Its weakness is its inability
to follow large distortions of the computational domain without recourse to frequent
remeshing operations.

Eulerian algorithms are widely used in fluid mechanics. Here, the computational
mesh is fixed and the fluid moves with respect to the grid. The Eulerian formulation
facilitates the treatment of large distortions in the fluid motion and is indispensable for
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reference configuration current configuration

Fig. 1.1 Lagrangian description of motion.

the simulation of turbulent flows. Its handicap is the difficulty to follow free surfaces
and interfaces between different materials or different media (e.g., fluid-fluid and
fluid-solid interfaces).

ALE algorithms are particularly useful in flow problems involving large distortions
in the presence of mobile and deforming boundaries. Typical examples are problems
describing the interaction between a fluid and a flexible structure and the simulation
of metal forming processes. The key idea in the ALE formulation is the introduction
of a computational mesh which can move with a velocity independent of the velocity
of the material particles. With this additional freedom with respect to the Eulerian and
Lagrangian descriptions, the ALE method succeeds to a certain extend in minimizing
the problems encountered in the classical kinematical descriptions, while combining
at best their respective advantages.

1.3.1 Lagrangian and Eulerian descriptions

Two domains are commonly used in continuum mechanics: the material domain
RX C M.nsd, with nsd spatial dimensions, made up of material particles X, and the
spatial domain Rx, consisting of spatial points x.

The Lagrangian viewpoint consists of following the material particles of the con-
tinuum in their motion. To this end, one introduces, as suggested in Figure 1.1, a
computational grid which follows the continuum in its motion, the grid nodes being
permanently connected to the same material points. The material coordinates, X,
allow us to identify the reference configuration, RX-

In the total Lagrangian formulation, RX is considered fixed and it corresponds
usually to the configuration of the continuum at the initial time. In the updated
Lagrangian formulation, the reference configuration changes during the calculation
and generally corresponds to the configuration relative to the previous time (or load)
step.
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The motion of the material points relates the material coordinates, X, to the spatial
ones, x. It is defined by an application <p such that

: RX X [*0j*final

(X,t)

which allows us to link X and a; during time by the law of motion, namely

x = x(X,t). t = t,

which explicitly states the particular nature of ip: first, the spatial coordinates x
depend on both the material particle, X, and time t, and, second, physical time is
measured by the same variable t in both material and spatial domains. For every fixed
instant t, the mapping <p defines a configuration in the spatial domain. It is convenient
to employ a matrix representation for the gradient of <f>,

where 0 is a null row vector and the material velocity v is

•<*•«=£ (1.2)

with meaning "holding X fixed".
x

Obviously, the one-to-one mapping (f> must verify det(dx/dX) > 0 (non-zero to
impose a one-to-one correspondence and positive to avoid change of orientation in
the reference axes) at each point X and instant t > to. This allows us to keep track
of the history of motion and, by the inverse transformation (X, t) = (f>~~l(x. t), to
identify at any instant the initial position of the material particle occupying position
x at time t.

Since the material points coincide with the same grid points during the whole mo-
tion, there are no convective effects in Lagrangian calculations: the material derivative
reduces to a simple time derivative. The fact that each finite element of a Lagrangian
mesh always contains the same material particles represents a significant advantage
from the computational viewpoint, especially in problems involving materials with
history-dependent behavior. These concepts are discussed in detail by Bonet and
Wood (1997) in their excellent textbook on nonlinear continuum mechanics for finite
element analysis. However, when large material deformations do occur, for instance
vortices in fluids, Lagrangian algorithms undergo a loss in accuracy, and may even
be unable to conclude a calculation, due to excessive distortions of the computational
mesh linked to the material.

The difficulties caused by an excessive distortion of the finite element grid are
overcome in the Eulerian formulation. The basic idea in the Eulerian formulation,
which is very popular in fluid mechanics, consists in examining as time evolves
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the physical quantities associated with the fluid particles passing through a fixed
region of space. In an Eulerian description the finite element mesh is thus fixed
and the continuum moves and deforms with respect to the computational grid. The
conservation equations are formulated in terms of the spatial coordinates x and the
time t. Therefore, the Eulerian description of motion only involves variables and
functions having an instantaneous significance in a fixed region of space. The material
velocity v at a given mesh node corresponds to the velocity of the material point
coincident at the considered time t with the considered node. The velocity v is
consequently expressed with respect to the fixed element mesh without any reference
to the initial configuration of the continuum and the material coordinates X:

v = v(x,t).

Since the Eulerian formulation dissociates the mesh nodes from the material particles,
convective effects appear due to the relative motion between the deforming material
and the computational grid, see Remark 1.1. As will be seen in Chapter 2, this
presents numerical difficulties, but permits an easy treatment of complex material
motion. By contrast with the Lagrangian description, serious difficulties are now
found in following deforming material interfaces and mobile boundaries.

Remark 1.1 (Material and spatial time derivatives). In order to relate the
time derivative in the material and spatial domain let a scalar physical quantity
be described by f ( x , t ) and f**(X,t) in the spatial and material domains,
respectively. Asterisks are employed to emphasize that the functional forms
are, in general, different. Since the particle motion <p is a mapping, f ( x , t ) and
/** (X, t) can be related as

, t ; , t j or / =j

The gradient of this expression can be easily computed as

9r „ * df ,_, a? (*,*),
which is amenable to the matrix form

^/** <9/**\ _ (df df
dX dt J \dx dt

which renders, after block multiplication, an obvious first expression, that is
(df** /dX) = ( d f / d x ) ( d x / d X ) ; however, the second one is more interest-
ing:

d/** _6f_ df_

dt ~ ~di + dxV'
This is the well-known equation that relates the material and the spatial time
derivatives. Dropping the asterisks to ease the notation, this relation is finally
cast as

df_
dt dt

or ~z = ~+vV/ , (1.3)



8 INTRODUCTION AND PRELIMINARIES

which can be interpreted in the usual way: the variation of a physical quantity
for a given particle X is the local variation plus a convective term taking into
account the relative motion between the material and the spatial (laboratory)
system. Moreover, in order not to overload the rest of the text with notation,
except for specific sections, the material time derivative is denoted as

and the spatial time derivative as

dt ' dt x'

1.3.2 ALE description of motion

The above review of the classical Lagrangian and Eulerian descriptions has high-
lighted the advantages and drawbacks of each individual formulation. It has also
shown the potential interest of a generalized description capable of combining at
best the interesting aspects of the classical mesh descriptions, while minimizing as
far as possible their drawbacks. Such a generalized description is termed an ALE
description. ALE methods were first proposed in the finite difference context where
original developments were made, among others, by Noh (1964), Trulio (1966) and
Hirt, Amsden and Cook (1974); this last contribution was reprinted in 1997. The
method was subsequently adopted in the finite element context and early applications
are to be found in the work of Donea, Fasoli-Stella and Giuliani (1977), Belytschko,
Kennedy and Schoeberle (1978), Belytschko and Kennedy (1978) and Hughes, Liu
and Zimmermann (1978).

In the ALE description of motion, neither the material R x nor the spatial Rx

configuration is taken as the reference. Thus, a third domain is needed: the referential
configuration Rx where reference coordinates x are introduced to identify the grid
points. Figure 1.2 shows these domains and the one-to-one transformations relating
the configurations. The referential domain Rx is mapped into the material and spatial
domains by *& and 4> respectively. The particle motion (p may then be expressed as
(p = $? o 4r~1, clearly showing that, of course, the three mappings 'Jf, 4> and </? are
not independent.

The mapping <£ from the referential domain to the spatial domain, which can be
understood as the motion of the grid points in the spatial domain, is represented by

and its gradient is

X

( X , t )



KINEMATICAL DESCRIPTIONS OF THE FLOW FIELD 9

Fig. 1.2 The motion of the ALE computational mesh is independent of the material motion.

where now the mesh velocity v is involved,

dx
(1.5)

Note that both the material and the mesh move with respect to the laboratory. Thus, the
corresponding material and mesh velocities have been defined, deriving with respect
to time the equations of material motion and mesh motion respectively, see equations
(1.2) and (1.5).

Finally, regarding *, it is convenient to represent directly its inverse ^ ~l,

(X,t)
(1.6)

and its gradient is
,-l

= dx w

where velocity w is defined as

w —
dt x

(1.7)

and can be interpreted as the particle velocity in the referential domain, since it
measures the time variation of the referential coordinate x holding the material particle
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X fixed. The relation between velocities v, v and w can be obtained by differentiating
(f) •=. <J> O SP"1,

rPM)
^v-JC' ") u\j\., i)

or, in matrix format,

/ dx

\0J I/ \0J I/ \ 0J 1

which yields, after block multiplication,

dx
v = v H w.

This equation may be rewritten as

dx
c:=v-v = —w, (1.8)

dx

thus defining the convective velocity c, that is the relative velocity between the ma-
terial and the mesh.

Remark 1.2. The convective velocity c, see (1.8), should not be confused with
w, see (1.7). As stated before, w is the particle velocity as seen from the
referential domain Rx, whereas c is the particle velocity relative to the mesh as
seen from the spatial domain Rx (both v and v are variations of coordinate x).
In fact, equation (1.8) implies that c = w if and only if dx/dx = I (where
/ is the identity tensor); that is, when the mesh motion is purely translational,
without rotations or deformations of any kind.

Remark 13. After the fundamentals on ALE kinematics have been presented,
it should be remarked that both Lagrangian and Eulerian formulations may
be obtained as particular cases. With the choice '$' = /, (1.6) reduces to
X = x and a Lagrangian description results: the material and mesh velocities,
equations (1.2) and (1.5), coincide, and the convective velocity c, see (1.8), is
null (there are no convective terms in the conservation laws).

If, on the other hand, «I> = I, (1.4) simplifies into x = x, thus implying an
Eulerian description: a null mesh velocity is obtained from equation (1.5) and
the convective velocity c is simply identical to the material velocity v.

Remark 1.4 (Evaluation of the grid velocity). In the ALE formulation, the
freedom of moving the mesh is very attractive. It helps to combine the re-
spective advantages of the Lagrangian and Eulerian formulations. This could.
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however, be overshadowed by the burden of specifying grid velocities well
suited to the particular problem under consideration. As a consequence, the
practical implementation of the ALE description requires that an automatic
mesh displacement prescription algorithm be supplied. In practice, such an
algorithm selects the grid velocity to adapt the motion of the computational
mesh to the peculiarities of the problem under investigation, trying to minimize
both the squeeze and the distortion of the elements. See for instance the ALE
mesh displacement algorithm developed by Giuliani (1982). When the ALE
description is employed as a tool to adapt a finite element mesh to particular
needs, for instance, to properly capture strong solution gradients, an error indi-
cator or an error estimator is normally used to drive the algorithm in charge of
computing the mesh velocities, see, for instance, Huerta et al. (1999).

1.3.3 The fundamental ALE equation

In order to express the conservation laws in an ALE framework, a relation between
time derivatives is needed. In fact, the so-called total (or material) time derivatives,
which are inherent to conservation laws, must be related to referential time deriva-
tives. The relation presented in Remark 1.1 must be therefore extended in order to
include the referential time derivative. Let a scalar physical quantity be described
by f(x.t), f * ( x - , t ) and f**(X.t) in the spatial, referential and material domains
respectively. Asterisks are employed to emphasize that the functional forms are, in
general, different.

With the help of mapping *&, the transformation from f*(x~, t] to f**(X.t) can
be written as

/^/'o*-1,

and its gradient can be easily computed as

)V A - ' ' d(x,t)

or, in matrix form,

df* df
dX dt \9x Ot

which renders, after block multiplication,

df** _ df* d _
dT ~~ ~ ~ d t ~ d x ~ '

Note that this equation relates the material and the referential time derivatives. How-
ever, it also requires the evaluation of the gradient in the referential domain. This can
be done, but in computational mechanics it is usually easier to work in the spatial (or
material) domain. Moreover, in fluids, constitutive relations are naturally expressed
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in the spatial configuration and the Cauchy stress tensor, which will be introduced
next, is the natural measure for stresses. Thus, using the definition of w given in
(1 .8), the previous equation may be rearranged into

.
dt dt dx

Dropping the asterisks to ease the notation, the fundamental ALE relation between
material time derivatives, referential time derivatives and spatial gradient is finally
cast as

df df at df
dt dt V/, (1.9)dx dt ..

which can be interpreted in the usual way: the variation of the physical quantity / for
a given particle X is the local variation (i.e., with respect to the reference x) plus a
convective term taking into account the relative motion between the material and the
reference system. This equation is equivalent to (1.3) but in the ALE formulation;
that is, when (x-, t) is the reference.

1.3.4 Time derivative of integrals over moving volumes

To establish the integral form of the basic conservation laws for mass, momentum and
energy, we also need to consider the rate of change of integrals of scalar and vector
functions over a moving volume occupied by fluid.

Consider therefore a material volume Vt bounded by a smooth closed surface St
whose points at time t move with the material velocity

v = v(x.t),

where x G St. A material volume is a volume that permanently contains the same
particles of the continuum under consideration. The material time derivative of the
integral of a scalar function f(x, t} (note that / is defined in the spatial domain) over
the time-varying material volume Vt is given by the following well-known expression,
often referred to as the Reynolds transport theorem:

4- I f(x.t)dV= I df(*''^dV + I f(x,t}vndS. (1.10)dt Jvt Jvc=vt dt Jsc=st

which holds for smooth functions f(x. t). The volume integral on the r.h.s. is defined
over a control volume Vc (fixed in space) which coincides with the moving material
volume Vt at the considered instant, t, in time. Similarly, the fixed control surface
Sc coincides at time t with the closed surface St bounding the material volume Vt.
In the surface integral, n denotes the unit outward normal to the surface St at time f,
and v is the material velocity of points of the boundary St • The first term on the r.h.s.
of (1.10) is the local time derivative of the volume integral. The boundary integral
represents the flux of the scalar quantity / across the fixed boundary of the control
volume Vc = Vt. A similar expression holds for the volume integral of a vector or
tensor quantity.
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An analogous formula can be deduced in the ALE context, that is with a referential
time derivative. In this case, however, v is no longer the material velocity, as will be
seen in Section 1.4.5, see also Huerta and Liu (1988).

Equation (1.10) constitutes the starting point for the derivation of the ALE inte-
gral form of the conservation equations of mass, momentum and energy, which are
discussed next.

1.4 THE BASIC CONSERVATION EQUATIONS

To serve as an introduction to the discussion of finite element models for both incom-
pressible and compressible flow problems, we recall in this section the differential
and integral forms of the conservation equations for mass, momentum and energy.

1.4.1 Mass equation

A fundamental law of Newtonian mechanics is the conservation of the mass contained
in a material volume. The law of mass conservation for a varying material volume Vt
occupied by fluid is given by

= ̂  f
dtJVt

dM
dt ~ J* ' P '

where p is the fluid density. Applying to this integral expression the formula (1.10)
for the rate of change of integrals over a moving volume and the divergence theorem,
one obtains

Since this relation is valid for all choices of the volume Vt, the integrand must be
identically zero. Hence

^ + V'(pv) = 0 (1.11)

at all points in the fluid. Equation (1.11) is called the mass-conservation equation,
or continuity equation. A different form of equation (1.11) is obtained by expanding
the divergence term and noting that two of the terms together make up the material
derivative of the density:

^ + pV-t; = 0. (1.12)
dt

1 .4.2 Momentum equation

The momentum equation, also termed the equation of motion, is a relation equating
the rate of change of momentum of a selected portion of fluid and the sum of all forces
acting on that portion of fluid. For the portion of fluid of volume Vt enclosed by the
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material surface St, the momentum is fVt pv dV and making use of the Reynolds
transport theorem in vector form, that is (1.10), its rate of change is found to be

ndS

(1.13)

^ / pvdV = I ^£-dV + f (pv®v)
at JVt JVt dt JSt

where the notation v <8> v denotes the tensor [viVj], i , j = 1, . . . , nsd. Moreover, the
z-th component of the divergence of a second-rank tensor T is

Making use of the continuity equation (1.11) and expression (1.3) for the material
time derivative, equation (1.13) can be transformed to

^ / pvdV= [ p^dV, (1.14)
at J Vt J vt at

which is simply the sum of the product of mass and acceleration for all the elements
dV of the material volume Vt.

In general, a portion of fluid is acted upon by both volume and surface forces. We
denote by b the volume force per unit mass of fluid, so that the total volume force
on the selected portion of fluid is fv pbdV . On the other hand, the i-component of
the surface force exerted across a surface element of area dS and normal n is given
by aij rij dS, so that the total force exerted on the selected portion of fluid by the
surrounding matter can be expressed in terms of the Cauchy stress a as

/ aijnjdS = I ^-dV or ( (T-ndS = f V-crdV.
JSt Jvt dxj JSt JVt

In the previous expression use has been made of the summation convention on repeated
indices. It will be used when the limits of the summation are clear as in this case
(from 1 to nsd). However, in this introductory chapter the summation will be used
more than strictly necessary in order to preclude misinterpretation.

The momentum balance for the selected material volume of fluid, which accounts
for both previous actions, is expressed by

p^-dV = ( pbdV+ f V-trdV.
t
 at Jvt Jvt

This integral relation holds for all choices of the material volume Vt. Thus,

dv
p— = pb+V-fT (1.15)

dt
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at all points of the fluid. This equation is termed the equation of motion; making use
of (1.3) it becomes

p— + p(v • V)v = pb + V • cr. or ^p = p6 + V- (cr — pv <g> v). (1.16)

This last expression is the conservation form of the momentum equation.
Substituting equation (1.15) into (1.14) yields the following form of the rate of

change of momentum for a material volume:

j /> c ft r

-7- / pvdV = p~dV = (pb + V-v)dV.
dt JVt JVt at JVt

For a fluid volume V (usually called control volume) whose position is fixed relative to
the coordinate axes (i.e., fixed in the spatial domain), the rate of change of momentum
is instead given from (1.16) by

— / pv dV - / -~dV = I (pb+V-<r)dV - I pv (v • n)dS.
Vt JV JV Ot Jy Jg

1.4.3 Internal energy equation

In incompressible flow problems, the energy equation is not required to solve the mo-
mentum and continuity equations. Its form is given here in view of its use in Chapter
4, where the finite element modeling of compressible flow problems is addressed.

Consider therefore the energy balance for the fluid of volume Vt contained within
a material surface St- Work is being done on this mass of fluid by both volume
and surface forces, and it may also be gaining energy by heat conduction across the
boundary. Some of this total gain of energy is manifested as an increase in the kinetic
energy of the fluid, and the remainder, according to the first law of thermodynamics,
appears as an increase in the internal energy of the fluid.

The first law of thermodynamics states that the increase of the internal energy per
unit mass of the fluid, Ae, is the sum

Ae = q + w.

where q denotes the gain of heat per unit mass and w represents the work performed
on the fluid per unit mass. Herein, we shall assume that the fluid is thermally isolated,
so that no exchange of heat can occur, q = 0.

The rate at which work is being done on the fluid in the material volume Vt is the
sum of a contribution

/
v • pb dV — I Vi phi dV

-Tt JVt
from the applied body force, and a contribution

f f d(vi&ij} f —v !(cr • n)dS — / v^ oij HJ dS = / —— dv — / v • (cr • vJdV
Jst JVt °xj JVt
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from the surface forces exerted by the surrounding fluid. Thus from these two ex-
pressions the total rate of work on an arbitrary material element is

P p p OXj p OXj

per unit mass of fluid. Using the equation of motion (1.15), we may rewrite the rate
of work per unit mass of fluid as

dv cr _ dvi an dvi
v> — + -:Vv = Vi — + -*- — .

at p at p OXj

The first term is clearly related to the gain in kinetic energy, while the second term
represents the rate of work w done in deforming the fluid element. In the absence of
heat transfer effects, the rate of change of internal energy per unit mass of a material
element of fluid is thus given by

(1.17)
at p OXj p

For an inviscid fluid the stress reduces to the static pressure (constitutive law),

ffij — ~P$ij •, OT <T = —pi.

where J is the identity tensor (same dimensions as cr in this case), and the internal
energy equation then takes the form

. . . i - - ^ = 0, (1.18)at
or, making use of (1.12),

dpe
1- (p + pe) V • v = 0.

dt
In terms of the partial time derivative, using (1.3), the internal energy equation reads

-^ + V-(pev) + pV-v = 0. (1.19)
ot

In a spatial representation, the rate of change of the internal energy for a material
volume of an inviscid fluid is then given from the Reynolds transport theorem, (1.10),

^ / PedV= f ^dV + I pe(vn)dS = f ^dV + f V.(pev)dV.
dt JVt JVt ot JSt JVt ot JVt

Using (1.19) in the previous equation yields

2- f pedV = - f pV-vdV.
dt Jvt Jvt

For a control fluid volume whose position is fixed relative to the coordinate axes (in
the spatial domain), the rate of change of internal energy is instead given in the form

~ f pedV = f ^dV = - f pV-vd\r - f pe(vn)dS.
ot Jv JY ot Jv Js
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1.4.4 Total energy equation

As shown by the structure of equation (1.19), the internal energy equation is not a
conservation equation of the type

dt J

In fact, the conserved quantity is the total energy. The total energy per unit mass of
the fluid is the sum

1 2

-e+ 2\\v\\

of the internal energy, e, and the kinetic energy. The rate of change of the total energy
per unit mass of a material element is thus

dE _ de dv
dt dt dt

For the particular case of an inviscid fluid, making use of the momentum equation
(1.15) and of the internal energy equation (1.18), it becomes

dE „ , .
p —— = — v • (pv) + v ' pb

or
d , dE dp
— (pE) = p h E— — — (p + pE)^7 • v + v "(pb — Vp).

In terms of the partial time derivative, the total energy equation reads

d
— (pE) = -V-((pE + p)v) +vpb. (1.21)

The rate of change of the total energy for a material volume is then given from (1.10)
and (1.21) by

d_
~dt

I PEdV = I ^-(pE)dV + I pEvndS
Jvt Jvt ot Jst

= I v ' pb dV —I pv • n dS.
J vt Jst

For a control fluid volume whose position is fixed relative to the coordinate axes, the
rate of change of the total energy is also obtained using (1.21)

/ pEdV = f v-pbdV- f (pE+p)v • ndS = f v-pbdV- f pHv - ndS,
Jv Jv Js Jv Jsdt

where
TT 7- PH = E+~

is the total specific enthalpy of the fluid.
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1.4.5 ALE form of the conservation equations

The ALE differential form of the conservation equations is readily obtained from the
corresponding material forms (1.12), (1.15), (1.17) and (1.20). The total derivatives
are rewritten using (1.9) and the result is

Mass:

Momentum:

dp
dt

Vp = — p V-u .

fde
Internal energy: p ( — C'Ve J = or-.V -v.

(1.22)

( O£j \
-7— + c-V£) =
ot v /

The starting point for deriving the ALE integral form of the conservation equations
is expression (1.10) applied to an arbitrary volume Vt whose boundary St = dVt

moves with the mesh velocity v:

d_
3t

I f ( x ,
x Jvt

t)dV =
df(x,t)

dt dV / /(x,
JSt

t)v-n dS.,

where, in this case, we have explicitly indicated that the time derivative in the first
term of the r.h.s. is a spatial time derivative, as in (1.10). We then successively
replace the scalar f(x.t) by the fluid density p, momentum pv, internal energy pe
and total energy pE. Similarly, the spatial time derivative df/dt is substituted by
the correponding expressions for the mass equation, see (1.11), for the momentum
equation, see (1.16), for the internal energy and for the total energy. The end result
is the following set of ALE integral forms:

d_
dt

d_
dt
d_
dt
d_
dt

I pdV + I pc-ndS =
: JVt JSt

I pvdV + I pvc>ndS= / (V•
c Jvt JSt JVt

I pedV + pec-ndS = <r :V-
: Jvt JSt JVt

/

r f
pEdV+ I pEc-ndS =

C r I c• t ** &t

a + pb) dV,

t; dV.
(1.23)

- v) + vpb)dV.

Note that the integral forms for the Lagrangian and Eulerian mesh descriptions are
contained in the above ALE forms. The Lagrangian description corresponds to se-
lecting v = v (i.e., c = 0), while the Eulerian description corresponds to selecting
v = 0 (i.e., c = v).

The ALE differential and integral forms of the conservation equations derived in
the present section will be used in Chapter 4 in connection with the finite element
modeling of coupled fluid-structure interaction problems.
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1.4.6 Closure of the initial boundary value problem

Once the governing equations are defined, boundary and initial conditions (the latter
only in transient problems) must be adequately prescribed in order to close the prob-
lem. Three types of boundary conditions are used in this text: Dirichlet, Neumann
and Robin. The last are also called mixed boundary conditions.

Dirichlet boundary conditions prescribe the value of the unknown function. Neu-
mann conditions impose the normal gradient of the unknown function along the
boundary. Robin boundary conditions prescribe a combination of the unknown func-
tion and its gradient.

Not all boundary conditions can be applied arbitrarily everywhere along the bound-
ary of the domain. For instance, in hyperbolic problems Dirichlet boundary conditions
cannot be imposed on the whole boundary, see Chapters 3 and 4. In every chapter we
shall present the model problem to be studied, and in each case boundary conditions
shall be presented and discussed in more detail.

1.5 BASIC INGREDIENTS OF THE FINITE ELEMENT METHOD

The application of the finite element method for solving a boundary value problem
requires a certain number of basic ingredients that we shall briefly recall in this
section on the basis of a simple model problem. Before that, we wish to introduce
some notations and mathematical terminology used throughout the book. Standard
finite element texts, such as, for instance, Strang and Fix (1973), Oden and Reddy
(1976), Carey and Oden (1983), Temam (2001), Girault and Raviart (1986), Hughes
(2000), Gunzburger (1989), Pironneau (1989) and Quarteroni and Valli (1994) provide
a detailed exposition of the mathematical concepts, which are the basis of the finite
element method.

1.5.1 Mathematical preliminaries

The process of spatial discretization by the finite element method rests upon the
discrete representation of a weak integral form of the partial differential equation to
be solved. The formulation and subsequent discretization of such an integral form
requires the definition of some function spaces and associated norms, as well as the
introduction of compact forms involving the functions pertaining to those spaces.

Consider a spatial region (or domain) fi C Ensd with piecewise smooth boundary
F. Here again, nsd = 1,2 or 3 denotes the number of space dimensions. We shall
use the notation

/ : H - + R

to state that for each spatial point x e ft, f ( x ) e E._ 0 denotes the closure of 0, that
is the union of the domain fl with its boundary F: fj = 0 U F.

A function / : fj ->• M is said to be of class Cm (fi) if all its derivatives up to order
m exist and are continuous functions. For instance, the notation f ( x ) G Cm(]a, 6[)
indicates that f ( x ) possesses m continuous derivatives for x €]a, b[.
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In the finite element analysis we work with integral equations and, thus, we are
interested in functions belonging to larger spaces than Cm. As we will see, instead
of requiring the m-th derivative to be continuous, we will require that its square is
integrable. In fact, finite element functions should possess generalized derivatives
(i.e., derivatives in the sense of distributions) and some integrability properties. Such
classes of functions are particular examples of Sobolev function spaces. A detailed
account concerning Sobolev spaces may be found in the book by Adams (1975).

1.5. 1. 1 Some useful Sobolev spaces We shall denote by £2 (ft) the space
of functions that are square integrable over the domain ft. This space is equipped
with the standard inner product

/*
/

Jn

1 /2
uvd&l and norm ||v||0 = (v,v) .

Next we describe a particular class of Sobolev spaces, those of square integrable
functions and derivatives. This restriction suffices for our purposes throughout the
book. For any non-negative integer k, we define the Sobolev space H*(ft) using
multi-index notation: given the n-tuple a = (a 1,02, • • • ,ansd) 6 Nnsd and the
non-negative integer |a:|:=a!i-l-c*2 + --- + anad^

} .

Therefore, "Hfe (ft) consists of square integrable functions all of whose derivatives
of order up to k are also square integrable. 'H k (ft) is equipped with the norm

Note that £2 is, in fact, a Sobolev space, 7^° (ft) = £2(ft), while the Sobolev
space for k = 1 is defined by

-Hl({l) = |w € £2(ft) I ^ € £2(ft) * = l, .--,n s d | .

This space is equipped with the inner product

i-l

and its induced norm

IMIi -
We shall also frequently use the subspace

Hj(ft) = {t> e n1^) | v = o on
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the elements of which possess a square integrable first derivative over the domain fi
and vanish on its boundary F. Moreover, its inner product and norm coincide with
those of ft1 (ft)-

Remark 1.5. Note that the Sobolev spaces used in what follows, namely H ° =
£2 , 'H

1 and T-C^, are Hilbert spaces with their corresponding inner product (recall
that a Hilbert space is a linear space with an inner product in which all Cauchy
sequences are convergent sequences).

Remark 1.6. HQ is usually defined as the closure of C0°(fi) (the set of all
continuous functions with continuous derivatives whose support is a bounded
subset of 0) with respect to the norm of ||-|| 1. That is, %o(0) *s me set °f a^
functions u in "H1 (SI) such that u is the limit in Hl (fi) of a sequence {us}'^-1

whose us are in (70° (fi).

1.5. 1.2 Extension to vector-valued functions In the finite element analysis
of flow problems consideration will be given not only to scalar functions (such as tem-
perature or pressure) but also to vector- valued functions (such as fluid velocity). For
vector- valued functions with m components, that is u, v : 0 — > Rm, the procedure
is in fact essentially the same as for scalar functions.

Consider again a domain 17 C Ensd , nsd > 1, and denote by Hk (ft) or [Hk (fi)]m

the space of vector functions with m components

U - ( U i , M 2 , - - - , W m )

for which each component Ui € "Hfe(f7), 1 < i < m. The space ?ife(f7) is equipped
with an inner product inducing the following norm

For the particular case of functions belonging to £ 2 (^) = "H° (H), the inner product
is given by

[u,v] = I u -v(Kl,
Jn

where there should be no ambiguity in using the same notation to represent the inner
product of both scalar and vector- valued functions.

1.5.2 Trial solutions and weighting functions

To define the weak, or variational, form of the boundary value problems discussed in
the present text, we need to define two classes, or collections, of functions: the test
or weighting functions and the trial or admissible solutions. Here these spaces are
defined in the context of the standard Galerkin formulation.

The first collection of functions, denoted by V, is composed of test functions
and consists of all functions which are square integrable, have square integrable first
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derivatives over the computational domain Q, and vanish on the Dirichlet portion,
YD, of the boundary. It is defined as follows:

This is as previously noted a Sobolev space and its inner product and norm coincide
with those of 'H* (SI).

The second collection of functions is called the trial solutions. This collection
is similar to the test functions except that these admissible functions are required to
satisfy the Dirichlet conditions on TD. This second collection is denoted by S and is
defined by

where UD is any function in ft1 (ft) such that UD = UD on YD- Thus, S can
be viewed as a translation of V and, consequently, it is an affine space. Note, for
instance, that, for UD ^ 0, the sum of two elements of S is not an element of
S. However, for homogeneous boundary conditions, u D = 0, trial and test spaces
coincide, V = S = 7/0(0).

The sets S and V clearly contain infinitely many functions. In the finite element
method, S and V are approximated by convenient finite dimensional subsets of these
collections which will be denoted by Sh and Vh, respectively. These finite element
spaces are characterized, among other things, by a partition of the domain.

At this point, we have to view the domain $7 as discretized into element domains.
Let Th(£l) be a regular partition, also called triangulation, of fl into nei convex
subdomains He 7^ 0, such that

nei

fl = |J Cle and fT n ft' = 0 for e ^ f.
e-l

Each subdomain $le has a piecewise smooth boundary Ye = dtle, and h is a charac-
teristic mesh size (diam($7e) < h for all elements).

The weighting functions wh € Vh vanish on YD- The approximation uh lies in Sh

and satisfies, with the precision given by the characteristic mesh size h, the boundary
condition UD on YD- In fact, along YD we should have uh = u^; however, in
order not to overload the notation u D is also used instead of u£, unless it is necessary
to explicitly show the precision of the boundary data. The interpolation spaces are
defined as

Vh := {w£Hl(n} |w|n« € 7>m(17e) Ve andw

Sh := {u£Ul(tt) |u|n< € Pm(^e) Ve and u = UD on TD} ,

where Pm is the finite element interpolating space. Note that Vh and Sh are finite
dimensional subspaces of the spaces of test, V, and trial, S, functions. In several
spatial dimensions three types of polynomial spaces are usually chosen: the set of
polynomials, Pm, of total degree < m (usually defined over the reference triangle).
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the set of polynomials, Qm, of degree < m in each variable (defined over the refer-
ence square), or the set of polynomials Sm := Pm ® span{xmy,xy'm} (known as
serendipity or trunk spaces over the reference square). They all include a complete
basis of the subspace of polynomials of degree m which characterizes the a priori
convergence rate of the finite element approximation.

1 .5.3 Compact integral forms

In establishing the weak, or variational, form of boundary value problems we shall
make frequent use of the bilinear forms

a(u,v) = I Vu:Vvd$l Mu.vtU1^}, (1.27a)
Jn

b(v,q) = - tqV-vdtl Vv € Ul(tt} andg € £2(ft), (1.27b)
./Q

as well as of the trilinear form

c(v;w,u) = I w>(vV)udft Vu,v,w € ̂ (fi), (1.27c)

where the following notation has been introduced:

for i ~ 1. . . . . m and j = 1, . . . . nsd

Vw: Vv = y y and w -(v • V)u =

1.5.4 Strong and weak forms of a boundary value problem

The process of spatial discretization by the finite element method rests upon an integral
form of the considered partial differential problem. This was the reason for introduc-
ing larger spaces than Cm based on integrability properties. Thus, the first task in
a finite element analysis consists of formulating a (continuous) variational problem
associated with the given partial differential equation and its boundary conditions.

Let us introduce a model boundary value problem that will illustrate the various
steps in the practical implementation of the finite element method. Consider solving
the Poisson equation

-V2u = s inn, (1.28a)

where 11 is enclosed by a piecewise smooth boundary F, and s G C°(n)isa specified
source term, which may depend on x. The following notation has been introduced:

i=l
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We further assume that the value of the unknown u is prescribed on the Dirichlet
portion TD of the boundary,

U = UD onFD, (1.28b)

while the normal derivative of w is prescribed on the remaining Neumann portion F jv
of the boundary F,

du
— :=n-Vu = h on FAT. (1.28c)
on

A function u G C2(Q) n C°(Cl) that satisfies (1.28) is called a classical solution of
the boundary value problem.

The first step in a weighted residual formulation leading to the finite element
discretization of our model problem consists of formulating a weak (or variational)
form of the boundary value problem. This is achieved by multiplying the governing
equation (1 .28a) by the weighting function w and integrating over the computational
domain Q:

Note that the continuity requirements on u still impose that it must be twice differen-
tiable. Now, however, the second derivatives of w are not required to be continuous,
they only need to be square integrable. Thus, it is sufficient that u 6 H2(ft). In
any case, it is obvious that classical solutions of (1.28) will also verify this integral
equation for all admissible functions w.

In order to derive the weak form and produce a natural Neumann boundary condi-
tion on FN, we apply to the l.h.s. of the previous equation the Green-Gauss divergence
theorem:

- Vw- Vujdft
'

= I Vw-VudSl- I w(n-Vu)dT.
JQ Jr

Now the regularity requirements on w and u are modified; u is only differentiated
once and w must be differentiable. In fact, its derivatives must be square integrable;
thus, we should have w 6 H1(fi). If w e V, recall from (1.24) that w = 0 on F£>,
and if we take into account the prescribed Neumann boundary condition (1 .28c), we
obtain the following weak form of our model problem:

= I wsd(l + I whdT.
Ja JrNrN

Note that the application of the divergence theorem has allowed us to naturally intro-
duce the Neumann boundary condition on F N. At the same time, it has removed the
second-derivative terms of the Laplacian operator from the volume integral. This re-
duces the continuity requirements on u and allows us to select this function in 1-L 1 (H),
since only first derivatives appear under the integral sign.
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Classical solutions of (1.28) will also satisfy this integral equation. But it only
accounts for (1.28a) and (1.28c), not Dirichlet boundary conditions (1.28b). This
is done by means of the proper choice of the space where u belongs, namely S.
Recall from (1.25) that every member of S satisfies the Dirichlet boundary condition
u = UD on Pp. Noting that provided u G <S the Dirichlet boundary condition on
FD is satisfied, the weak form of our model problem can then be formally stated as
follows:

find u € S such that a(w, u) = (w, s) + (w, h)T Vw e V. (1.29)

Here use has been made of the scalar version of (1.27a),

a(w,u] = / VwVudfi, (1.30)
./n

and the linear functionals

(w.s] = I wsdQ. and (w.h}^ = I
V ' ' Jv ' V ' JrN Jr

whdT.
rN

By construction a classical solution u of (1.28) is a solution of the weak form
(1.29). Let us show that a weak solution u G <S of (1.29) is unique; this is done by
means of the Lax-Milgram lemma. Therefore, if we assume that a classical solution
of (1.28) exists the same function w is a solution of both problems.

Remark 1.7. Weak solutions can also be found in cases that do not have a
classical solution. This is the case of many applications in which data do not
have the required smoothness, for instance a discontinuous source term s(x) . In
these circumstances the weak problem (1.29) can be formulated and, if the Lax-
Milgram lemma can be applied, it admits a unique solution, but this solution is
not a classical solution.

Theorem 1.1 (Lax-Milgram lemma). Let a(-, •) be a bilinear form on a Hilbert
space "H equipped with norm ||-||%. Ifa(-- •) is continuous, that is

371 > 0 such that \d(w. v] \ < ii\\w\\-u \\v\\-u Vw.v^'H.

and coercive (or "H- elliptic), that is

3a > 0 such that a(v,v) > a\\v\\u Vv € U.,

then for all /(•) bounded linear mappings on H (thus continuous), that is

3-j2 > 0 such that \l(w) \ < 72|MI« ^w € ^»

there exists a unique u£H such that

a(w. u) = l(w) Viy € U

is satisfied.
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A proof can be found elsewhere, see for instance Ciarlet (1978), Yosida (1995) or
Quarteroni and Valli (1994).

In order to show that this theorem can be applied to (1.29) some further consid-
erations are needed. First, note that both arguments of the bilinear form in Theorem
1.1 must belong to the the same Hilbert space. This is not the case in (1.29) unless,
recalling the definition of S in (1.25), UQ is defined as u = UQ + UD with UQ G V.
Replacing this decomposition in (1.29) the weak form becomes

find WQ G V such that a(w,uo) = (w.s) + (w,h)r — a(w.UD) Vw € V. (1.31)

Thus, in this case % = V = 'H\ (ft) and the associated norm is the 'H1 norm,
IHI* = IHIi.

Second, since s, h and UD are data, we can define the linear operator

l(w) := (w.s) + (w.h)r — O,(W.UD)-

And third, we need to check that the bilinear form defined in (1.30) is coercive
and continuous, and that the linear form is bounded. The continuity of a (•. •) and /(•)
is easily verified assuming some regularity in the data and applying systematically
the Cauchy-Schwartz inequality. However, coercivity of a(-, •) is more involved in
particular when Neumann or Robin boundary conditions are present. Quarteroni and
Valli (1994, Sec. 6.1.2) give an excellent presentation of the conditions for existence
and uniqueness of a solution, which is beyond the scope of this text.

Remark 1.8 (Symmetric bilinear form). If, under the assumptions of Theorem
1.1, the bilinear form a(-, •) is symmetric, then it can define a scalar product
on H. Note that this is the case of (1.30) for functions in V = U\-D (ft). This
inner product induces in 1-L the so-called energy norm

which is a natural norm in the engineering finite element context. Moreover, in
this case the weak problem can be viewed as a minimization problem as noted
in the next remark.

Remark 1.9 (Variational principle). Under the assumptions of the previous
remark, if we pose w = 6u, where 6u is a variation of the function u, then it
can be shown that the weak form (1.29) emanates from the minimization of the
quadratic functional

I(u) = i [(Vufdtt- [ usdft- I uhdT,
2 ./n Jn JYN

or, equivalently,

I(u] = -a(u.u) — (s.u) — (/i.w)n .v / 2 ' -v
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Indeed, SI = 0 implies that

f (V6u)-V(u)(Kl- f Susdfl- f
Jti ./Q JTTN

It follows that the solution of the boundary value problem (1.28) coincides with
the value of u which minimizes the potential I(u) € "HfD (fi).

This is the case here for the Poisson equation, but also, for instance, in linear
elasticity where the displacement field satisfying the differential equations of
equilibrium of a body corresponds to the displacement field which minimizes
the quadratic functional expressing the total potential energy of the body. It
must, however, be emphasized that the finite element method is in no way
dependent upon the existence of such a potential or variational principle.

1 .5.5 Finite element spatial discretization

We now have all the necessary ingredients to discretize the weak form (1.29) by means
of the Galerkin finite element method. Assuming that the reader has some familiarity
with this method, we shall limit ourselves to a brief review of the main steps in the
process of finite element spatial discretization.

For a partition Th, see Section 1.5.2, the Galerkin formulation of our model
problem is obtained by restricting the weak form (1.29) to the finite dimensional
spaces Sh C S and Vh C V defined in (1.26),

findu'1 <E Sh such that a(wh,uh) = (wh,s) + (wh,h)TN \twh £ Vh . (1.32)

1,5.5.1 Convergence of Galerkin approximations Convergence in finite
elements rests upon a priori error bounds (this terminology is used because these
bounds are stated before the approximation u h is actually computed). Moreover, as
previously done, the solution of (1.32) is decomposed as uh = UQ + u^ with UQ € Vh

and M^ = UD along F£>; then, (1.32) can be written as: find UQ 6 Vh such that

fl(iAwS) = (wh,s) + (wh,h)rN -a(w,uh
D} \fwh£Vh. (1.33)

Theorem 1.2 (Cea's lemma). Under the assumptions of Theorem 1.1 there exists a
unique solution UQ to (1.33) anduo to (1.31); moreover, UQ is the near-best fit to UQ
in the \\-\\i norm and the error is bounded as

\\UQ - UQ\\I < — min ||w0 - vh\\i.
7l vh<=Vh

The proof, which can be found elsewhere, see for instance Quarteroni and Valli
(1994) or Wait and Mitchell (1985), is characterized by the Galerkin orthogonality
property. This property is obtained by subtracting (1.32) from (1.29), or subtracting
(1.33) from (1.31), where w is particularized as w h € Vh C V, namely

a(wh, u - uh) = 0 or a(wh, u0 - wj) = 0 Vwh e Vh .
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Remark 1.10 (Symmetric bilinear form). Note that if the bilinear form is
also symmetric, and thus fl(-, •) induces the energy norm (see Remark 1.8),
the Galerkin orthogonality states in fact that the approximation error u - u h

is orthogonal to Vh under the energy norm. Thus uh can be viewed as an
orthogonal projection of u with respect to the natural (energy) scalar product.
Moreover, Cea's lemma can be particularized in terms of the energy norm and
the approximation uh is said to be the best fit in terms of energy

IN- "oil = in \\UQ- vh\\.

Note that this best fit, which is standard in self-adjoint problems, is rarely used
in flow problems where convection induces non-symmetric bilinear forms.

These bounds are of interest because, if we intuitively accept that the interpolation
of any function in V is improved as we refine the finite element mesh (consistency),
that is a family of partitions Th (fi) of H, see Section 1 .5.2, can be defined such that

min ||u-vfc||i -»0 as h -> 0. (1.34)

then Theorem 1.2 ensures that convergence is enforced as we decrease h.
In fact, piecewise polynomial interpolation analysis allows us to ensure that

V u e V , min ||u-t;ft||i <C(v}hp

vHevh

where C(v] is a positive constant, which depends on the smoothness of v and the
distortion of the finite element mesh, and p is a positive number, which also depends
on the smoothness of v and the degree m of the complete basis of polynomials used
(see the end of Section 1.5.2).

This bound combined with Cea's lemma produces the standard a priori error bound

IN-t*Sl|i <C(u0)—hp. (1.35)
7i

Note, however, that such a bound is only interesting from a theoretical point of view.
Based on interpolation theory and the Lax-Milgram and Cea lemmas, this bound
states that a sequence of finite element solutions converges to the exact solution of
the weak problem. In engineering practice it is also important to quantify the error
associated with an approximation uh. This is done by means of a posteriori error
bounds, see for instance Ainsworth and Oden (2000) or Ladeveze and Pelle (2001).

1.5.5.2 Computational aspects Due to the presence of Dirichlet boundary
conditions, a distinction must be made between the number of nodal points, nnp, of the
discretized domain and the number of nodal unknowns, that is the number of equations
neq, of the system which will result from the Galerkin approximation. Following the
terminology introduced by Hughes (2000), we denote by rj = (1, 2, . . . , nnp} the
set of global node numbers in the finite element mesh. Furthermore, we denote by
T]D C 77 the subset of nodes belonging to the Dirichlet portion of the boundary. It
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follows, in scalar problems, that the cardinal of 77 \ r/£> is equal to neq, the number of
equations.

With this notation, the approximation uh can be written as

tih(a>)= NA(X)UA+ NA(x)uD(xA) (1.36)

where NA is the shape function (see details below) associated with node number A
in the finite element mesh and u A. is the nodal unknown. Moreover, in the Galerkin
formulation the arbitrary test functions, wh, are defined such that

wh € Vh := span {NA}. (1.37)

Thus, using the definitions of (1.36) and (1.37) in (1.32), we obtain the following
discrete weak form of our model problem:

a(NA,NB)uD(xB), VAerj\rlD. (1.38)

Remark 1.11. Upper-case letters, such as A and B, are used to represent global
node numbers in the finite element mesh: 1 < A, B < nnp . On the other hand,
lower-case letters, such as a and 6, will be used to represent local node numbers
in an element: 1 < a. 6 < nen (nen is the number of element nodes).

Remark 1.12. A suitable mesh generator is used to subdivide the computational
domain fi into element domains Oe. In two dimensions, meshes generally
consist of triangular and/or quadrilateral elements. An interesting feature of the
finite element method is that it handles naturally unstructured meshes, which can
concentrate the elements in regions such as internal or boundary layers where
sharp solution gradients are expected. The term "unstructured mesh" means
that the number of elements meeting at a node (the element vertices) may vary
from node to node. A representative unstructured mesh in two dimensions is
shown in Figure 1.3. In the present text, we shall assume most of the time
that the computational domain ft is two-dimensional and that its boundary F is
polygonal.

In the practical implementation of the finite element method, attention is focused
on the computations in an individual element. For every element D e € Th , the shape
f unctions Na, a = 1. . . . ,nen, are defined on a master element in terms of normalized
coordinates. They define the finite element interpolation space, which includes a
complete basis of the subspace of polynomials of degree m. These subspaces are
denoted as Pm, Qm or Sm, see Section 1.5.2.

As representative of the meshes used in two dimensions, let us consider, as sug-
gested in Figure 1.4, a subdivision of the computational domain into four-node
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Fig. 1.3 Representative unstructured finite element mesh in two dimensions.

quadrilaterals. Each quadrilateral is mapped onto a canonical square with normal-
ized local coordinates (f . 7]) € [—1,1] x [— 1, 1] and the element shape functions are
tensor products of those used in one dimension. This leads to a so-called isoparamet-
ric bilinear approximation on each element where both the global coordinates (x, y)
and the unknown u are expressed by the same bilinear expansion parameterized by
the nodal values:

and

o=l

where (xa, ya) are the coordinates of node a of the element.
All the element contributions to the discrete weak form (1.38) are computed

in the local coordinates (£. 77) using numerical quadrature, see Hughes (2000) or
Zienkiewicz and Taylor (2000a) for details.

The assembly of the element contributions to the discrete weak form into the
complete system results in a matrix equation of the form

Ku = f. (1-39)

where u is the vector of the unknown nodal values. Its dimension is neq, in fact,
ur = [... . UA,... ] with A € 77 \ rjD.

In practice, the global matrix, K, and nodal vector, f, result from the topological
assembly of element contributions. The addition of the element contributions to the
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m

1 - 1 2

Element shape functions

Flgf. f .4 Four-node quadrilateral elements and normalized reference element.

appropriate locations in the global matrix, K, and nodal vector, f , can be represented
through the action of an assembly operator A acting on the local element matrix
and nodal vector as follows:

K- AeKe, K*

f = AV + (Na,h)
d^nrN

en

Y,a(Na,Nb)Qeu*Dh.
6=1

Here, ue
Db = U£>(xl)if up is prescribed at node number b and equals zero otherwise.

Hughes (2000) provides a detailed exposition on the topological assembly of the
matrices and nodal vectors arising from the Galerkin finite element discretization.

Remark 1.13 (Alternative implementation of essential boundary condi-
tions). The treatment of Dirichlet boundary conditions as indicated previously
is not the only possible one. In fact, equation (1.39) is the matrix form of the
weak form (1.33), but the blunt matrix form of (1.32) induces, in general, a
singular system

K*u* = f*

of nnp equations where some of the components (the cardinal of n D in scalar
problems) of u* = [. . . , uA, . . . ]T, A e 77, are given by the Dirichlet boundary
conditions.

Another popular method to implement essential boundary conditions is by
means of Lagrange multipliers. If the Lagrange multiplier technique is chosen,
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the prescribed values on the Dirichlet portion of the boundary are introduced
by means of linear constraints and the original system (singular in general) is
enlarged by adding n equations (the linear constraints) and n A unknowns (n\
Lagrange multipliers A, one per constraint, for instance the cardinal of 77 D, i.e.,
nnp — neq, in scalar problems). The resulting system with the linear constraints
is written as

, ., fK*u* + ATA-f*
r(u'A) = \ Au*-b

where ATA is the vector of reaction forces that enforce the constraints, A is a
vector of n\ Lagrange multipliers, A is an n\ x nnp rectangular matrix, and b
a vector listing the prescribed values of the constraints.

Standard linear and nonlinear equation solvers have been adapted to han-
dle linear constraints via the Lagrange-multiplier technique, see for instance
Rodriguez-Ferran and Huerta (1999), and this procedure is very popular in
object-oriented codes but it is not standard in other commercial programs. Note
that apart from increasing the number of constraints the new matrix of the en-
larged system,

'K* A
A 0

is no longer positive definite as it is usually the case in (1.39). A practical
example of how to incorporate the constraints represented by Dirichlet boundary
conditions by use of Lagrange multipliers is given in Section 4.7.2.3. Ainsworth
(2001) discusses some further possibilities for implementing linear constraints.
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This chapter recalls first the deficiencies of the standard Galerkin formulation in
convection-dominated problems. Then, it provides an introduction to generalized
methods of the Petrov-Galerkin type designed to produce stable and accurate results
in the presence of highly convective effects. This includes the Streamline-Upwind
Petrov-Galerkin (SUPG) method, the Galerkin/Least-squares (GLS) method, as well
as an introduction to other stabilization methods such as bubble function and wavelet-
based methods, and, finally, introduces the variational multiscale method.

2.1 PROBLEM STATEMENT

As an introduction to the study of steady convection-diffusion problems by means of
generalized Galerkin methods, we start by recalling the basic steps in the formulation
of the standard Galerkin finite element method. This will serve as a basis to point
out the deficiencies of the classical Galerkin approach in the solution of convection-
dominated transport problems and thus introduce more adequate formulations.

2.1.1 Strong form

Let us consider the transport by convection and diffusion of a scalar quantity u = u(x)
in a domain 0 C Ensd, nsa = 2 or 3, with smooth boundary F. The boundary is
assumed to consist of a portion F£> on which the value of u is prescribed and of
a complementary portion FJV on which the diffusive flux is prescribed. Conditions
on F£) are Dirichlet (or essential) conditions, while conditions on FJV are known
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as Neumann (or natural) conditions. The boundary value problem associated with
steady convective-diffusive transport is defined by the following equations:

a - Vu - V -(i/Vu) = s in ft, (2.1a)

u = UD on FD, (2.1b)
du

n' i/Vu = 1/7— = h on FJV, (2.1c)
on

where u is the scalar unknown, a(x) is the convection velocity (also known as ad-
vection), is > 0 is the coefficient of diffusivity and s(x) is a volumetric source term.
The function UD denotes prescribed values of u on the Dirichlet portion F D of the
boundary, while function h denotes prescribed values of the normal diffusive flux on
the Neumann portion F^. The unit outward normal vector to F is denoted by n.

Remark 2.1 (Pure convection). In the absence of diffusion, i/ = 0, problem
(2.1) is hyperbolic and boundary conditions can only be prescribed on the inflow
portion of the boundary. In this case it is convenient to consider a partition of
the boundary F such that

r = r*n u
Tin = {x G F I a • n < 0} (inflow boundary)

rout = {x e F | a • n > 0} (outflow boundary).

In the case of Dirichlet inlet conditions, the equations governing purely con-
vective transport are

a • Vu = s in 17,

u = UD on Fm.

Note that the solution of linear pure convection problems can be discontinuous
in the cross-flow direction (a jump may exist orthogonal to a characteristic curve;
Chapter 3 presents in detail the concept of characteristic curves). This occurs
when the data UD, that are prescribed on the inflow boundary, are discontinuous.
By contrast, in the case of a convection-diffusion problem (2.1), the solution
is continuous over the whole computational domain, any possible jump being
spread over a layer of width proportional to the square root of the diffusivity,
v/J', around the near characteristic.

Remark 2.2. Instead of prescribing the normal diffusive flux on F #, one may
consider prescribing the total normal flux, h T, consisting of the sum of a diffu-
sive component and a convective component:

(fVw — ua) • n = hr- (2.2)

This is standard in conservation equations. Two options are available to deal
with a total flux boundary condition. The first one consists in rewriting (2.2)
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as a standard diffusive flux boundary condition, but with a value of the flux
depending on the solution u itself:

du
v— — HT + u(a'n). (2.3)

on

In most applications the previous equation appears as

du
v— = (a-n)(u - Wext),

on

when the total flux, HT, is replaced by —(a *n)wext, where uext is the value
of u outside the domain. Note that, in the numerical implementation, such
a boundary condition will contribute to the construction of the l.h.s. matrix.
This, as will be seen next, does not occur with the standard Neumann boundary
condition, equation (2.1c).

The second option consists in expressing the convective term in the form
a-Vw = V-(ua) — u V -a. This allows us to rewrite the convection-
diffusion equation, see (2.la), in the form

V - ( u a - z/Vw) - u V-a = s. (2.4)

This option incorporates the divergence of the total flux appearing in the bound-
ary term (2.2), and, as is shown next, will simplify the treatment of the boundary
integral in the weak form.

2.1.2 Weak form

The first step towards the finite element spatial discretization of the convection-
diffusion problem is to associate an equivalent weak (or variational) form to the strong
form (2.1) of the boundary value problem. As seen in Section 1.5.2, the trial solution
space S consists of real-valued functions, u, defined on such that all members of
S satisfy the Dirichlet condition in (2.1b). Similarly, the space V of the weighting
functions, w, is chosen such that w — 0 on F£>. Namely, S :— {u e H1^) \ u —
uDonTD}andV:=n^D(^) = {w £nl(ty \ w = QonTD}.

The weak formulation of the convection-diffusion problem (2.1) then takes the
following form: find u £ «S such that

f fw(a-Vu}di1- I wV-(vVu}d$l=: I wsdQ. f o ra l lu?eV,
JQ JQ

or, using the divergence theorem on the diffusion term and noting that w — 0 on F />,

f
/

Ja

w h dT for all w e V. (2.5)
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This weak form is at the basis of the finite element spatial discretization of the
convection-diffusion problem. Note that the integration by parts of the diffusion
term allows us to naturally introduce the prescribed flux condition on portion F TV of
the boundary.

At this point, it is convenient to introduce a compact version of (2.5) based upon
the integral forms defined in (1.27), namely

r
w sd$l.

(2.6)
a(w.u) = I Vw'(i/Vu)dfl. (w.s) = I

7n ' Jn

c(a;w.u) = I w(a-Vu}(Kl. (w,h)r = I whdT.
Jn N JrN

This allows us to rewrite the weak form (2.5) in the following compact form:

a(w.u) +c(a;w.u] = (w.s) + (w,h)r . (2.7)

Remark 23. When the total flux boundary condition (2.2) is prescribed, see
Remark 2.2, an alternative weak form of the convection-diffusion problem may
be constructed from the differential equation in conservation form (2.4). After
integration by parts the weak form in this case becomes

— ud)(Kl - I
JQQ

= wsdtl + whTdT f o r a l l w e V . (2.8)

Note that an extra term (due to the integration by parts of the convection term)
appears on the l.h.s. This term cancels if the convection velocity is divergence
free, which is often the case in engineering applications.

2.2 GALERKIN APPROXIMATION

We now have all the necessary ingredients to perform the spatial discretization of the
convection-diffusion problem (2.1) by means of the Galerkin finite element method.
Let Sh and Vh be finite dimensional spaces' subsets of S and V, respectively. These
interpolation spaces were defined in Section 1.5.2. The weighting functions w h € Vh

vanish on YD- The approximation uh lies in Sh and satisfies, with the precision given
by the characteristic mesh size h, the boundary condition UD on YD- The Galerkin
formulation is obtained by restricting the weak form (2.7) to the finite dimensional
spaces, namely, find uh e Sh such that

a(wh,uh] + c(a-wh,uh) = (wh,s) + (tuh , /0rv forall wh € Vh. (2.9)

At this point, we have to view ft as discretized into elements fie, 1 < e < nei-
As shown by equation (1.36), the approximation, uh, can be written as

uh(x] = T NA(x)uA+ XA(X}UD(XA} (2.10)
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where NA is the shape function associated with node number A and u ̂  is the nodal
unknown. Moreover, the test functions, wh, are defined such that

wh eVh := span {NA}. (2.11)

Thus, after substitution of (2.10) into (2.9), and using (2.1 1), we obtain the discrete
weak form

[a(NA,NB)+c(a;NA,NB)]uB = (NA,a) + (NA,h)rN

Y, [a(NA,NB)+c(a;NA,NB)}uD(xB),foTa\lAerj\T)D. (2.12)

Assembling the element contributions to this weak form, we obtain the algebraic
system governing the nodal values of the discrete solution of the convection-diffusion
problem. After inclusion of the Dirichlet boundary conditions as explained in Chapter
1 , this system takes the matrix form

(C + K)u = f, (2.13)

where u is the vector of the unknown nodal values with dimension n eq, while C and
K are, respectively, the convection matrix and the diffusion matrix. Both matrices are
obtained by topological assembly of the element contributions evaluated, as explained
in Section 1.5.5. In terms of the local node numbers 1 < a. b < nen, the assembly
process takes the following form:

JVa (a • V JVb)dfJ (convection matrix)
(2.14)

= ACKe K%b= I VNa-vVNbdn (diffusion matrix).

The r.h.s. vector in (2.13) considers the contribution of the source term, s, the pre-
scribed flux, h, and the Dirichlet data uD. It results from the assembly of elemental

A e
fe with

6=1

where ue
Db = UD (xb) if UD is prescribed at node number b and equals zero otherwise.

2.2.1 Piecewise linear approximation in 1D

As a model problem and for illustration purposes we consider a ID scalar equation.
Moreover, in order to determine the element matrices the convection and diffusion
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coefficients, a and v, are assumed constants. However, the source term s is vari-
able with x. The treatment of the boundary conditions is simplified by imposing
homogeneous Dirichlet conditions on each side. Note, however, that other boundary
conditions could easily be implemented. Thus the model problem is written as

aux - vuxx = s(x) in]O.L[ (2.16a)

L. (2.16b)

The weak form associated with this model problem is, after integration by parts
of the diffusion term, given by

,L ,L
/ (waux + wx vux} dx = I wsdx. (2.17)

Jo Jo

or in the compact form, see (2.6),

a(w,u) + c(a;w.u) = (w.s).

The weak form will now be discretized using a uniform mesh of linear elements of
size h. Without loss of generality the node numbering is assumed to be consecutive;
neq is, in this case, the number of interior nodes of the spatial discretization, that
is TJD = {1; nnp} and = {1. 2. .... neq. neq + 1. nnp}. The trial and weighting
functions are defined as before, see (2.10) and (2.1 1). Then they are introduced in
(2. 17) to yield the following discrete equation at an interior node A, A = 2,... :neq +
1:

(2,8)

A linear element in ID is defined by two nodes, nen = 2, locally denoted as 1 and
2. The shape functions of a linear element are given by

where £ is the normalized coordinate, — 1 < £ < + ! . As usual, at any interior point of
the element one has w(£) = JVi(Oui +7V2(Ou2 ,andx(0 = JV*i(0xi +^V2(0^2-
Note that for a uniform mesh of size h

dx= -(x2 -x i )d^= -df,

and thus
8Nb dNb d£ 2dNb
~x~ ~ ~*TW ~ T~*T for 6 =1,2.ox o£ ox h o£

With these preliminaries, the integrals in expression (2.18) are readily evaluated in
closed form to obtain the element convection matrix, Ce, and the element diffusion
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matrix, Ke. In terms of the local node numbers 1 and 2 the result is

=./
JQe

= "/JQe

dx

dx dx

-1

dx dx dx dx
dN2_dN± dN2 dN2

V dx dx dx dx /

dx — —
h

+1 -1
-1 +1

(2.19a)

(2.19b)

Here fie = [xe, xe+i] with e = 1, . . . , nel (nel = neq + 1 = nnp — 1 in this case).
Furthermore, interpolating the source term s by means of the element shape functions,
namely s(£) — NI (£) s1 + N2 (£) s2 , one finds that the components of the load vector
f in (2.13) are obtained from element contributions of the form

(NlSl N2 N2s2)}
Tdx.

With these results, and assembling in the usual finite element manner the contributions
emanating from both elements to which a given node belongs, one finds that the
Galerkin method delivers the following discrete equation at an interior node j:

2h
. (2.20)

Remark 2.4. Notice that the l.h.s. of the discrete equation produced with linear
elements coincides with that of second-order central differences. In this respect,
the Galerkin method based on linear elements and the central difference method
appear to be closely related. Nevertheless, a significant difference between finite
element and finite difference approximations is observed in the treatment of the
source term. On one hand, the Galerkin method generates a weighted average
on the r.h.s. of (2.20). That is, the finite element method uses the so-called
consistent mass matrix to weigh the nodal values of the source term s j. This
consistent mass matrix is defined by

M = ACMe

where the element mass matrix can be written in terms of the element shape
functions as

lab L N2N

On the other hand, the difference method simply uses a local value of the source,
namely Sj at node j. That is, the difference method employs a so-called lumped
(or diagonal) mass matrix, ML, defined at the element level by

[M1 V - flab — I
JQe

0
0

dx
h A 0
2 VO 1
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2.2.2 Analysis of the discrete equation

In this section we show that the Galerkin finite element method as described in the
previous section is not ideally suited to solve convection-dominated problems. To
characterize the relative importance of convective and diffusive effects in a given flow
problem, it is useful to introduce the mesh Peclet number

Pe=!r (2.21)
which expresses the ratio of convective to diffusive transport. This allows us to rewrite
the discrete equation (2.20) in the form

a /Pe-1 2 Pe+1

The importance of the Peclet number will become more and more clear as we move
along. However, the previous equation is already a good example. Note that the l.h.s.
of (2.22), which corresponds (for linear elements and a Galerkin formulation) to the
discrete counterpart of the l.h.s. of the weak form (2.9) or the differential operator in
(2. la), is characterized by the Peclet number.

To illustrate the deficiencies of the Galerkin finite element method in the solution
of convection-dominated problems, we shall first present a simple numerical example
based on linear elements and then use this example to identify a possible remedy for
improving the finite element solution.

This problem simply consists of solving the ID boundary value problem (2.16)
with a constant source term, s = 1, in a dimensionless domain, L = 1. A uniform
source has been chosen on purpose in order to avoid truncation errors due to the
spatial discretization of the source term. In this manner, the truncation error, which
will arise from the Galerkin discretization of our model problem, must be attributed
fully to the discrete representation of the convection and diffusion operators.

The exact solution to the above model problem is given by

U(I) = x _ , (2.23)
a \ 1 - exp 7 /

where 7 = a/v. The numerical approximation to (2.23) has been computed with a
mesh of 10 uniform elements using the Galerkin scheme (2.20) or (2.22) for several
values of the mesh Peclet number, see (2.21), namely, Pe = 0.25, 0.9 and 5 (the
convection velocity a is taken as one). The results are displayed in Figure 2.1 in
comparison with the exact solution. One notes that the Galerkin solution is corrupted
by non-physical oscillations when the Peclet number is larger than one. The Galerkin
method loses its best approximation property when the non-symmetric convection
operator dominates the diffusion operator in the transport equation, and consequently
spurious node-to-node oscillations appear.

The Galerkin equation (2.20) has a truncation error. This is standard in discrete
equations. We shall now analyze it and, as a result, discover why the Galerkin method
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Galerkin solution
exact solution

0.1 0.2 0.3 0.4 0.5 0.6
domain

Fig. 2.1 Galerkin solution (solid lines) of the convection-diffusion problem (2.16) with
L = 1, s — 1 using a uniform mesh of 10 linear elements. Dotted lines show the exact
solution.

(and the intimately related central difference method) are not optimal methods for
solving convection-dominated problems.

To reach our objective, we need to find a discrete scheme similar in structure
to (2.22), but giving the exact solution at each node of a uniform mesh of linear
elements for any mesh size h and all values of the Peclet number. The comparison
between this exact scheme and the Galerkin scheme will then allow us to identify
which modifications are necessary, in the Galerkin method, in order to improve its
response in highly convective situations.

To obtain an exact scheme, we must identify the value of three coefficients, say
a1, a2 and a3, such that

+ + 1 (2.24)

for all nodal coordinates Xj, mesh dimensions h and Peclet numbers Pe, From the
exact solution (2.23) we have

l-exP7

1 — exp 7

1 — exp

1 — exp 7



42 STEADY TRANSPORT PROBLEMS

When these expressions are introduced in (2.24), the following three conditions are
obtained:

ai + e*2 + 0:3 = 0
-c*i + 0:3 = a/h

ai exp (-2ft) + «2 + a3 exp (2ft) = 0.

Solving for QI, 012 and 0:3, we obtain

= -a(l + coth ft) /(2fe)
= a(coihPe)/h

= a(l-cothft)/(2/0.

When these expressions are substituted in (2.24), the desired exact scheme becomes

^- [(I - C0thft)tlj+i + (2cothft)Uj- - (I + COthft)Uj_i] = 1. (2.25)
£t\>

As expected, this equation presents similarities but it is not identical to the one obtained
with the Galerkin formulation (2.22). To highlight the similarities and the differences
between both schemes, equation (2.25) may be rearranged in two interesting ways.

First, in a form similar to the original Galerkin scheme (2.20)

2 + ^ - ' =i , (2.26)

where v is an added numerical diffusion defined as

v = 0 = QvPe with /3 = cothPe - . (2.27)
2 ft

Note that this added numerical diffusion only depends on the parameters of the gov-
erning differential equation and the element size h.

Second, the same scheme (2.25) can also be rewritten as

, ,- _v - *' (2-28)

where the discretization of the convective term appears as a weighted average of the
fluxes (convection) of the solution to the left and to the right of node j. That is, the
convection term is not discretized using a centered scheme.

This analysis is at the origin of two families of early techniques developed for
improving the standard Galerkin method: those based on adding an artificial diffusion
and those concerned with non-centered discretizations of the convection operator, also
called upwind schemes. These early methods are presented in Section 2.3 and the
current stabilization techniques are discussed in Section 2.4.

Remark 2.5. To reduce the computational costs (repeated evaluations of hyper-
bolic cotangents), it is common practice to replace the optimal formula (2.27)
by its doubly asymptotic approximation, see Figure 2.2, given by

a ~ aP ~ Papprox
Pe/3 if - 3 < Pe < 3,

sign(Pe) if \Pe\ > 3.
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Peclet

Fig. 2.2 Optimal value of the parameter B, see equation (2.27), and its doubly asymptotic
approximation, see equation (2.29).

Remark 2.6 (The negative diffusion of the Galerkin method). A simple com-
parison between the Galerkin discrete scheme (2.20) and the exact difference
scheme (2.26) indicates that the Galerkin method introduces a truncation er-
ror in the form of a diffusion operator. That is, the Galerkin scheme lacks
—P(UJ+I — 2uj + Uj-i)/h2 to represent the exact solution. The diffusion
coefficient P, see (2.27), gives a measure of the magnitude of the truncation
error as a function of the Peclet number. This truncation error is systematically
negative for all values of Pe. Due to this negative truncation error, a modified
equation is actually solved by the Galerkin method, which possesses a reduced
diffusion coefficient. Such a modified equation is the differential equation that
is solved exactly (exact nodal values) by the Galerkin method, namely

a Wi
_sinh2(Pe)l
V -2

fe J
71 —W'.T.T (2.30)

Notice that as the Peclet number increases the diffusion coefficient in the mod-
ified equation (2.30) may become negative. In this case, no stable solution is
guaranteed. Figure 2.3 shows the actual diffusion coefficient of the partial dif-
ferential equation associated with the Galerkin scheme, namely the modified
equation (2.30). Note that it becomes negative for values of the grid Peclet
number larger than one.

The negative numerical diffusion inherent in the Galerkin finite element
method (and the second-order central difference method) is indeed the cause
of the numerical difficulties encountered in the simulation of highly convective
transport problems.
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2.
|-0.5h

I

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Pe

Fig. 2.3 Normalized diffusivity of the modified equation associated with a Galerkin formu-
lation, see equation (2.30), namely 1 — (i//i/)(sinh2(ft)/ft2), as a function of Pe = a/i/(2i/).

Remark 2.7 (Linear difference equation). To further highlight the appearance
of non-physical oscillations when the grid Peclet number exceeds unity, we note
that the homogeneous form of the discrete equation (2.22) can be rewritten as

(1 - Pe)(Uj+i ~ Uj) = (l + Pe)(Uj - Uj_ i ) ,

which shows that the slopes of the solution to the left and to the right of node
j are of opposite sign when the Peclet number is larger than one.

Moreover, this linear difference equation can be solved exactly, see the details
in Isaacson and Keller (1994, Chap. 8, Sec. 4). The characteristic equation is

( l - P e ) A 2 - 2 A + ( l + P e ) =0.

Its roots are AI = 1 and A2 = (1 + Pe)/(l - Pe), and thus the solution of the
homogeneous form of equation (2.22) is given by

where C\ and Ci are constants fixed by the boundary conditions. This ex-
pression clearly shows that the approximate solution delivered by the Galerkin
method is oscillatory when Pe > 1.

By contrast, the homogeneous form of the discrete equation corresponding
to the exact scheme (2.26) or (2.28) reads

[1 + (3 - l)Pe] (Uj+l - Uj) = [l + (8 + l)Pe] (Uj - U j_ ! ) , (2.31)
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Fig. 2.4 Quadratic element in ID.

where /3 is given in (2.27). The analytical solution of this linear difference
equation can also be determined, and is given by

Uj — C/i + u

To avoid spurious oscillations of the Galerkin method, the absolute value of (3
should be larger than the critical value

\ft\ > ft • — 1 O 3?"*lyLJ .x_ /-'cnt — *- \ T * \£*3£ }

Note that this condition is verified by both the optimal value of beta, (2.27),
and its doubly asymptotic approximation defined in (2.29).

2.2.3 Piecewise quadratic approximation in 1D

To further illustrate the deficiencies of the Galerkin finite element formulation in
convection-dominated problems, let us now examine the numerical solution of a 1D
convection-diffusion problem discretized with quadratic shape function elements.
First, we shall establish the form of the convection and diffusion matrices. Then the
discrete equations for the model problem (2.16) are analyzed.

One of the objectives of this section is to show that quadratic elements and, in gen-
eral, high-order finite elements present serious difficulties in convection-dominated
problems. This is mainly due to the fact that the behavior of interior and corner nodes
is different. This will be illustrated in detail in the next section.

As shown in Figure 2.4, we consider a generic element with end nodes 1 and 3,
and a mid-side node 2. With reference to the normalized coordinate — 1 < £ < +1,
the shape functions of the element are

It follows that at any interior point of an element, one has w(£) = A ri(^)u i +
W2(f) u2+Ar3(C) u3 andx(£) = NI(£) xi +N2(£) x2+N3(£) x3. If a uniform mesh
is used, the middle node is located at x% = (#1 + xs)/2. Then, if the characteristic
size is h (h is the distance between nodes not the element size), the following relations
hold between the normalized and physical coordinates: dx = h d£ and

dx ~ <9 dx ~ h
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f
element left element right

• + • f
j - 2 j-l j j +1 j + 2

Fig. 2.5 Node numbering for a uniform mesh of quadratic elements.

With these interpolation functions the integrals in expression (2.18) are readily
evaluated in closed form to obtain the convection, Ce, and diffusion, Ke, matrices of
the quadratic element:

-/Jn*

dx dx

dx

dx

£• f\ &
OX

N^ N3dx

dN3\
dx

dN3

dx
dN3

dx )

dx

/ -1 4/3 -l/3\
a- -4/3 0 4/3
2 \ 1/3 -4/3 1 /

(2.34a)

dx dx dx dx dx dx
dN3

dx dx dx dx dx dx
dN3 dN3

\ dx dx dx dx dx dx /

dx

(2.34b)

Here fie = [x2e-i,x2e+i] with e = 1,... ,nel (nei = (neq + l)/2 = (nnp - l)/2
in this case).

As with the linear element, we interpolate the source term s(x) in (2.16) by means
of the element shape functions,

s(£) = 7Vi(£)si + A^2(0S2 + N3(£)s3, (2.35)

and obtain the components of the load vector f in (2.13) from element contributions
of the form

= 6-1,2,3.

In order to obtain in finite difference format the discrete equation at each node,
the numbering sequence shown in Figure 2.5 is employed. With the element matrices
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presented in (2.34a) and (2.34b), and assembling in the usual finite element manner,
one finds that the Galerkin method delivers two types of nodal equations representing
the discrete counterpart of the convection-diffusion equation (2.16a):

1. At a mid-side node i (in Figure 2.5, i = j +1 or i = j — 1) the discrete equation
is obtained in the form

- I
= - («_, + 8Si + ,M) (2.36)

its l.h.s. is identical to equation (2.20) obtained using piecewise linear approx-
imations.

2. At the comer (inter-element) node j (see Figure 2.5) the discrete equation
involves a stencil of five nodes and reads

4/i
y J

'«J-2 ~

= jQ (-Sj-2 + 2«j-_i 4- 8«j + 2sj+i - 5j+2) - (2.37)

As already done for the linear element, a first test for quadratic elements is per-
formed by solving the linear convection-diffusion problem (2.16) with L — 1 and
s = 1. The results obtained with the Galerkin formulation on a uniform mesh of
five quadratic elements are displayed in Figure 2.6 and compared with the exact so-
lution given, as previously, by (2.23). Again the Galerkin solution is characterized
by spurious node-to-node oscillations when convective effects become important.

Remark 2.8. Similar conclusions can be drawn with another well-known aca-
demic problem, see Section 2.6.2. The same linear convection-diffusion equa-
tion (2.16a) is solved over a unit domain, L = 1, with no source term, s = 0,
and the Dirichlet boundary conditions w(0) = 0 and w(l) = 1. The exact
solution is, in this case,

=

1 - exp (7)

with 7 — a/v.

2.2.4 Analysis of the discrete equations

We shall now analyze the discrete equations (2.36) and (2.37) delivered by the
Galerkin method on a uniform mesh of quadratic elements. As previously done for
the piecewise linear approximations, see Section 2.2.2, an exact scheme is identified
for both the mid-side and corner nodes.
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Galerkin solution
exact solution

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2.6 Galerkin solution (solid lines) of the convection-diffusion problem (2.16) using a
uniform mesh of five quadratic elements.

1. At a mid-side node i, see equation (2.36), a three-point exact difference formula
is sought. Following the same steps as in Section 2.2.2, the same scheme will
be obtained, that is equation (2.26) or (2.28) with the corresponding parameters
given by (2.27). Thus as previously discussed, two interpretations (upwinding
or artificial diffusion) are again possible. Moreover, it follows that the mid-
side node equation delivered by the Galerkin method corresponds to a modified
equation with a reduced diffusion coefficient.

2. At the corner (inter-element) node j (see Figure 2.5) a new exact discrete
equation is needed. Each difference equation now involves five nodes, see
(2.37). The same procedure as in Section 2.2.2 is used. Notice, however, that
now five coefficients must be determined, which need to satisfy the condition

Uj-2 + C*2 Uj-i + 013 Uj + Ct4 Uj+i + Ct5 Uj+2 = 1, (2.38)

but only three equations are available. This is reasonable because an exact
scheme can be obtained with three nodes. If more nodes are employed, families
of schemes are possible. For instance, the following two-parameter (c \ and c^)
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family will induce exact nodal schemes:

4h

Ct2 - -^- [-2(1 + COthPe) - (1 + 3 COthPe) Ci - (1+ COthPe) C2] ,

a3 = ~ [4 coth ft - (1 - 3 coth Pe) ci + (1 + 3 coth ft) c2] . (2.39)
Tl/t'

0:4 = f2^1 ~ coth/>e) + (! ~ cothPe) ci + 2(1 - 3 coth Pe) c2] ,

Q!5 = — r- (1 — COthPe) C2.
4/7,

However, as previously done, we prefer to rewrite equation (2.38) as a dis-
crete equation delivered by the Galerkin formulation with an added numerical
diffusion. To this end, we rewrite equation (2.37) in the form

o I ~'->~ri "J~x I _ ( "JT^ uj—2
\ 2h ) \ 4/i

= 1. (2.40)

where a new artificial diffusion coefficient ^corner must be defined. In fact,
after substitution of (2.39) into (2.38) and imposing its equivalence to (2.40),
one obtains

1 , 1-cothPe
« COth Pe —-
2 2-cothPe
1 , 1 + COthPe
- COthPe
2 2-cothPe

and

ah (coth Pe - I/ft) - (coshPe)2(coth 2Pe - l/(2Pe))
2 l-(coshPe)2/2

(2.41)

Comparing the discrete equation (2.37) delivered by the Galerkin method and
the exact scheme (2.40), one notes that the truncation error introduced at corner
nodes by the Galerkin method is again in the form of a spurious diffusion.

This analysis confirms that any standard discrete formulation will induce different
responses for interior and corner nodes. Moreover, an exact nodal formulation must
treat, as we have seen, differently interior and corner nodes.

We shall now look at ways to remedy the lack of stability of the Galerkin finite
element method and thereby obtain stable and accurate approximations to convection-
dominated problems.
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2.3 EARLY PETROV-GALERKIN METHODS

The Galerkin formulation presents serious deficiencies in convection-dominated prob-
lems. These deficiencies can be interpreted and cured in two ways, see Section 2.2.2.
First, diffusion was added in order to counterbalance the negative numerical diffu-
sion introduced by the Galerkin approximation based on linear elements. Second, an
upwind approximation of the convective term is used because the centered scheme em-
ployed is not ideal in convection-dominated problems. Precisely, the early remedies
were based on these two philosophies. In fact, as will be seen later, both methodolo-
gies are equivalent. That is, an upwind approximation induces numerical diffusion
and vice versa.

2.3.1 Upwind approximation of the convective term

In the framework of the finite difference method, numerical diffusion can be introduced
by replacing the second-order accurate central approximation to the convective term
by a first-order upwind approximation defined, for a > 0, by

ux(xj) w Uj ~^j~l. (2.42)

If upwind differencing is used on the convective term instead of central differencing,
the discrete convection-diffusion equation at node j becomes, in the absence of source
term,

Uj - tij-i _ Uj+i - Uj + Uj-i _
h h2

The upwind derivative of the convective term introduces a numerical dissipation
which comes in addition to the physical diffusion i/, as can be seen from the Taylor
series development of the convective term around x j:

?i * ~~~ /LL ' i CLiL f\
a = aux(xj) —— uxx(xj) + O(/i ).

Iv £

An added diffusion of magnitude ah/2 has thus been introduced by the upwind
approximation of the convective term. As a matter of fact, the discrete equation
(2.43) also results from the central difference approximation of the equation

( , ah\ naux - \v -I- — J uxx = 0.

which includes an added numerical diffusion of magnitude ah/2. It has, however,
been noted that in most cases the upwind treatment of the convective term as given in
(2.43) leads to excessively dissipative results and this has given rise to many criticisms
against the upwind technique, see for instance Davis and Mallinson (1976), Gresho
and Lee (1979) and Leonard (1979). That a full upwind treatment of the convective
term leads to stable, but overly diffusive, results can be appreciated from Figure 2.7
which shows the upwind solution of the model problem (2.16) in comparison with the
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—&— Full Upwind sptutior
- -G- Galerkin solution

exact solution

0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2.7 Full upwind solution (solid lines) of the model convection—diffusion problem (2.16)
with L — 1 and s = 1. Dashed lines show the Galerkin approximation and dotted lines the
exact solution (2.23),

Galerkin approximation and the exact solution. Note that for large Peclet numbers
the solution is stable and close to the exact one. However, for low values of the Peclet
number, when the Galerkin approximation is accurate, the full upwind solution is
clearly over diffusive.

2.3.2 First finite elements of upwind type

In a finite element framework, several different techniques can be utilized to achieve
the upwind effect. The key idea in practically all the proposed finite element formu-
lations of upwind type has been to replace the standard Galerkin formulation with
a so-called Petrov—Golerkin weighted residual formulation in which the weighting
function may be selected from a different class of functions than the approximate solu-
tion. The basic idea behind such an approach has been that the optimal approximation
property, the basis of the success of the standard Galerkin finite element method in
self-adjoint problems, could be carried over to convection—diffusion problems by
means of the Petrov—Galerkin formulation.

The first upwind finite element formulations were presented in the 1970s by the
Dundee and Swansea research groups (see, e.g., Christie et al., 1976; Heinrich et al.,
1977; Heinrich and Zienkiewicz, 1979; Griffiths and Mitchell, 1979). These were
based on modified weighting functions such that the element upstream of a node is
weighted more heavily than the element downstream of a node. An example of such
a weighting function is shown in Figure 2.8. In this way, the finite element equivalent
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Galerkin

Fig. 2.8 Upwind-type weighting function,

element e element e + 1

f
j - 1 J J + 1

Fig. 2.9 Node numbering for two consecutive linear elements.

of upwind differencing was invented in the form of a Petrov—Galerkin method based
upon an upwind distortion of the weighting function.

To give an example of upwind test functions, we consider again the solution of the
ID model problem (2.16) with piecewise linear approximations. Let j be an internal
node belonging to elements e and e + 1, see Figure 2.9. The shape functions of node
j are given by

,, (#2 = 1(1+0 in elemente,
Nj = < * for £€[-!,!].

1 #1 = ^(1 — 0 inelemente + l,

Upwind test functions, Wj, giving more weight to the upwind element e than to the
downwind element e + 1, can be constructed by adding and subtracting from the
Galerkin weights a bubble function of amplitude proportional to a free parameter 3
as follows:

{ 1 "* 9
u>2 = 4(1 + 0 + 1/2(1 — t^) in element e,

1 "I Oxw)i = Ml — £) — fp(l — £ ) in elemente + l£, 4

If we replace the Galerkin weighting function Wj with the above Petrov—Galerkin test
functions in the weak form (2.17) of the convection—diffusion problem (2.16) with
s — 0, the resulting modified weak form reads

(w a ux + wx v ux) dx = 0.

Discretization of this weak form yields the following equation at the internal node j:

[1 + (1 + / 3 ) P e ] ( u j – Wj– 1) – [1– (1– 0)Pe](u j+1 – uj) = 0.
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The parameter /? controls the amount of numerical diffusion (or upwinding). Note that
the previous equation is in fact equation (2.31). Thus, as noted previously, choosing
the parameter \(3\ > flmt = 1 — l/|Pe|, see equation (2.32), will avoid an oscillatory
solution. Moreover, the exact solution at the nodes is obtained with /3 defined by
(2.27), that is j3 = cothPe – 1/Pe.

Though giving exact solutions for the ID steady convection—diffusion equation,
this initial upwind finite element formulation suffered from severe shortcomings in
application to more complicated situations. These early Petrov—Galerkin methods
were able to deliver stable numerical results; however, they produce in general an
excessive numerical dissipation and were thus subject to the same criticism as upwind
differences. Moreover, the formulation requires the use of higher-order weighting
functions, which make the computer implementation of this Petrov—Galerkin method
more difficult and more costly than the classical Galerkin method as regards numerical
integration.

As suggested by Hughes (1978), the upwind effect can also be achieved through
a modification of the numerical quadrature rule for the convective term. In the ID
case, in which piecewise linear elements are employed, a single quadrature point, £,
is positioned within the element according to

f = cothPe -- .

In the case of a bilinear quadrilateral, the location of the quadrature point is defined
by

£ = COth Pe/: - I/Peg , fj = COth Pen - I /Per, , (2.44b)

Pet - a€V(2i/), Peri = «„ V(2")> (2.44c)
a$ = e^ • a, an = e^' a, (2.44d)

where the unit vectors, e^ and en, and the element lengths, h$ and /i^, are defined as
shown in Figure 2. 10, and a and v are evaluated at the origin of the {£, 77} coordinate
system in the element. Unfortunately, this early two-dimensional scheme was found
to exhibit the shortcoming of excessive cross wind diffusion.

Another early approach to the development of finite element schemes of the upwind
type was suggested by Belytschko and Eldib (1979). Their method is based on
amplifying certain terms in the convection matrix and for linear elements the behavior
of the amplification scheme was shown to be similar to other upwind finite element
schemes.

2.3.3 The concept of balancing diffusion

In the previous section non-centered discretizations of the convection term (upwind
schemes) were presented. However, as noted previously, see Section 2.2.2, another
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Fig. 2.10 Geometry of four-node quadrilateral element.

alternative to improve the behavior of the Galerkin method (with linear elements) in
convection-dominated problems is to add artificial diffusion to counteract the negative
dissipation introduced by the Galerkin formulation. This alternative is used next and
will be shown to coincide with an upwind scheme.

2.3.3.1 Linear elements in 1D For the simple case of the linear convection-
diffusion problem (2.16) with a constant source term, it is possible to formulate an
optimal upwind technique producing the exact solution at the nodes of a uniform
mesh of linear elements for all values of the Peclet number. Exploiting the results
in Section 2.2.2, an optimal method can be constructed by considering a Galerkin
approximation of the modified equation

aux – (v + v) uxx = 0, with v = 0—
£

containing a free parameter /? which governs the amplitude of the added numerical
diffusion. Note that the source is taken as zero, s = 0, in order to simplify the
developments.

For the convection—diffusion problem (2.16) with Dirichlet boundary conditions
at x = 0 and x = L, Hughes and Brooks (1979) replace the usual weak formulation

,L
/ (wau x + wx vux) dx = 0,

Jo

where w denotes the weighting function, by the following weak statement

(waux + wx (y + v)ux) dx = 0, (2.45)
f
/

Jo
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Fig. 2.11 Weighting function of the streamline-upwind (SU) method for linear elements.

where the magnitude of the added diffusion, v, is governed by the free parameter
/? (0 < 0 < !)• The optimal value of parameter /3 is given by (2.27), that is
P = coth Pe — l/Pe, and the value /3 = 1 corresponds to full upwind differencing as
in (2.42).

Since the added numerical diffusion counterbalances the negative diffusion intro-
duced by the Galerkin method, it is also termed balancing diffusion (Kelly et al., 1980).
In view of the definition of the added diffusion, v = Pah/2, we note that the weak
statement (2.45) can be rewritten in the form

/ ( w + /3— wx }aux + wxvux \dx = 0, (2.46)

which shows that the balancing diffusion method uses a modified weighting Junction,
given by w = w + P(h/2)wx for the convective term only. Note that equation (2.46)
does not correspond to a consistent Petrov—Galerkin formulation because the modified
weighting function is only applied to the convective term. Moreover, the modified
function is discontinuous at the inter-element boundaries, as shown in Figure 2.11 for
the case of a linear element. Since it gives more weight to the element upstream of a
node, the modified function is clearly an upwind-type weighting function. We shall
refer to this scheme as the streamline-upwind (SU) method in view of its generalization
to multiple dimensions. In fact, in several spatial dimensions diffusion is added in
the flow direction only and not transversely.

To perform the spatial discretization of the weak form (2.46) using linear finite
elements, we proceed as in Section 2.2.1 for the Galerkin formulation. The integrals
in (2.46) are easily evaluated in closed form. They lead to the following SU form of
the convection matrix:

As shown by the weak form (2.46), the element diffusion matrix, K e
su, possesses the

same structure as the Galerkin diffusion matrix, Ke, defined in (2.19b).

2.3.3.2 Quadratic elements in 1D Our objective is now to develop modified
weighting functions giving exact results for all values of the Peclet number when
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approximating the 1D linear convection—diffusion equation by means of a uniform
mesh of quadratic finite elements.

As shown in Section 2.2.3, the piecewise quadratic approximation generates two
types of nodal equations which possess distinct truncation errors. This somehow
complicates the formulation of an added diffusion method with respect to linear finite
elements, since different values of the balancing diffusion should be incorporated into
the corner node and the mid-side node equations given by the Galerkin formulation.

At mid-side nodes, the optimal value of the added diffusivity is given by the same
formula obtained for linear lD elements, that is equation (2.27). At corner nodes, the
Galerkin method introduces another numerical diffusion and the optimal value of the
diffusivity is given by equation (2.41). Thus, the artificial viscosity that needs to be
added at the mid-side and corner nodes is, respectively, v = ft ah/2 with

0 = cothPe-l/Pe (2.47a)

and Corner = ftcorner ah/1, where

(CQthPe- 1/Pe) - (COShPe)2(COth2Pe-
Pcorner = - - - 7 - . p „ /o - - (2.475)1 - (coshPe)2/2

We now have all the ingredients to formulate the balancing diffusion method for
ID quadratic elements. As with linear elements the weak form reads

f. L

(wau x + w x v u x ) d x = 0.

but now the modified weighting function w depends on the type of nodal equation to
be weighted:

{ Nj + ft (h/2) (dNj/dx) with j mid-side node.
Nj + ftcomer (h/2) (dNj/dx) with j comer node.

where ft and ftcomer are defined in (2.47).
On this basis, we can perform the spatial discretization of the lD linear convection—

diffusion equation using the quadratic shape functions defined in (2.33). Then, the
SU form of the element convection matrix is found to be given by

/-I + 7/6 Corner 4/3 (1 - Corner) -1/6 (2 - ftcorner)\

C|£,= ~ -4/3(1 + 0) 8/3/5 4/3 (1-3} }.
* \l/6 (2 + Corner) -4/3 (1 + Corner) 1 + 7/6 Corner /

while the element diffusion matrix, K e
su, possesses the same structure as the Galerkin

diffusion matrix, Ke, defined in (2.34b).
The use of the above balancing diffusion methods for linear and quadratic ele-

ments in the solution of convection-dominated problems is illustrated in Figure 2.12
where exact solutions are obtained at the nodes. Compare these results with the
corresponding Galerkin approximations shown in Figures 2.1 and 2.6.
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Fig. 2.12 Streamline-upwind (artificial diffusion) solution (solid lines) of the convection-
diffusion problem (2.16) with L = 1, s = 1 using a uniform mesh of 10 linear elements (left)
and 5 quadratic elements (right). Dotted lines show the exact solution.

Moreover, it is important to note that the exact nodal solution for quadratic elements
presents, in convection-dominated cases, an important overshoot (recall that a uniform
mesh is employed). This behavior, which is inherent to the quadratic approximation,
will be an important drawback in nonlinear problems such as the ones discussed in
Chapters 4 and 6.

2.3.3.3 Multidimensional case: the concept of SU schemes The exten-
sion to multidimensional domains of the concept of modified weighting functions
discussed above is not trivial. The crucial issue is that the balancing diffusion should
be added in the flow direction only, and not transversely. The reason is that convective
transport takes place along the streamlines and adding diffusion transversely to the
flow leads to overly diffusive results, due to an excess of crosswind diffusion.

In order to extend the added diffusion method to deal with multidimensional prob-
lems, Hughes and Brooks proposed in a series of papers (Hughes and Brooks, 1979;
Brooks and Hughes, 1982; Hughes and Brooks, 1982) to construct the artificial diffu-
sion operator in tensorial form to act only in the flow direction and not transversely.
This leads to the concept of SU schemes, which account for the directional character
of the convective term. The idea of adding diffusion along the streamlines was also
exploited by Kelly et al. (1980) and described as anisotropic balancing dissipation.
This is achieved by replacing the scalar artificial diffusion coefficient v in (2.45) by
the tensor diffusivity

= vai,aj/\\a\ (2.48)

where ai is the component of flow velocity, a, along the coordinate direction x,;.
The development of a general theory to optimally select v is still an area of current

research. For the basic isoparametric elements a simple generalization of the ID
definition is usually adopted. For example, in the case of the bilinear quadrilateral
one takes

)/2, (2.49)
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where £ and 77 are defined in (2.44), and the standard notation for the normalized
coordinates defined in Figure 2.10 is employed.

Remark 2.9. The tensor diffusivity, v, represents a diffusion acting only in the
direction of the flow and not transversely. In two dimensions this can be verified
assuming that locally the x\ direction is aligned with the streamlines and the x2

direction is perpendicular. That is, the components of the convection velocity
are a — (1.0)T. In this coordinate system the artificial diffusivity matrix
defined by (2.48) is

.= A 0N

V° °y
which clearly manifests the absence of crosswind diffusion.

In order to determine the streamline-upwind test function, that is the multidimen-
sional modified weighting function, the weak form (2.45) is rewritten for n sd spatial
dimensions, namely: find u e S such that for all w € V

I \w (a • Vu) + Vw • (vInsd + i>). Vu] rffi = 0, (2.50)

where Ingd is an identity matrix of dimension nsd and the added diffusion i> has been
incorporated. In fact, given the definition of this added tensor diffusivity, see (2.48),
the added term can be modified as follows:

f - f ^
in Jn l l«l l2

Consequently, equation (2.50) can be rewritten as

/ \ \w + 77-77^ («• Vtu)| (a • Vu) -I- vVw - Vu > dft = 0.
ynU HI2 J J

Therefore, the SU test function, which only affects the convective term, is defined as

(2.51)

Finally, the SU method can be interpreted as the Galerkin method plus an extra term
introducing the SU added numerical diffusivity:

f \w(a • Vu) + vVw • Vul dft + f -^ (a • Vw) (a .Vu) dQ. = 0. (2.52)
7nl- v ; -I Jn I IQII2

Standard Galerkin Added SU term

As noted previously, the perturbation added to the test function is discontinuous along
the element edges or interfaces. Thus, the extra term in (2.52) is only computed in
the element interiors. When this methodology is generalized for the original steady
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convection-diffusion problem, equations (2.1), the weak form, (2.7), associated with
the SU stabilized technique becomes

a(w, u) + c(a; w, u]

+ E / (a'Vw)(a'Vu)d^ = K*) + M)rv (2'53)

SU stabilization term

where P is given by (2.49) and the constants therein by equations (2.44).
This approach, called the SU formulation, makes use of upwind test functions

only for the convective term. As was shown, it is equivalent to the use of an artificial
diffusion coefficient acting only along the streamline direction. This method produces
smooth solutions for high Peclet numbers. Moreover, it is able to deliver exact
results on a uniform lD grid for the linear, constant coefficient, convection—diffusion
equation. However, accuracy problems still remain in more complicated cases, such
as spatially variable source term or convection velocity, as well as time-dependent
problems. In fact, modifying the test function only for the convective term produces
a non-residual formulation. Note that the true solution of the differential equation
is no longer a solution to the weak problem (2.53). A discussion of these accuracy
problems (in a finite difference context) and numerical remedies to overcome them
can be found in Christie (1985), Leonard (1979) and Morton (1996). Herein, we shall
limit ourselves to indicate that when the governing equation includes a source term,
this term must, for consistency, be discretized using the same SU weighting function
as the convective term. Failing to do this would lead to erroneous results, as will be
seen in the next section, see also the numerical results in Figure 2.13.

Hughes and Brooks (1982) subsequently proposed to apply the modified weighting
function to all terms in the equation in order to obtain a consistent formulation.
Moreover, they noted that for linear elements the perturbation to the standard test
function can be neglected in the diffusion term. The concept of adding diffusion
along the streamlines in a consistent manner has been successfully exploited in the
Streamline-Upwind Petrov—Galerkin (SUPG) method that will be described next.

2.4 STABILIZATION TECHNIQUES

In order to stabilize the convective term in a consistent manner (consistent stabiliza-
tion), ensuring that the solution of the differential equation is also a solution of the
weak form, Hughes and co-workers have proposed several techniques. They follow
a structure similar to (2.53). That is, an extra term over the element interiors is added
to the Galerkin weak form. This term is a function of the residual of the differential
equation to ensure consistency. Note that this is not the case in (2.53). These methods
are especially designed for the steady convection—diffusion equation, see (2. la), or
more generally for the steady convection—diffusion-reaction equation, namely

a- Vu - V-(i/Vu) + au = s in 0, (2.54)
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with the usual Dirichlet and Neumann boundary conditions shown in (2.1). The
residual of the differential equation (2.54) is

tt(t«) = a • VM - V -(vVu) + au-s = £(«) - s, (2.55)

where £ is the differential operator associated with the differential equation. Note
that as soon as we restrict ourselves to the finite dimensional spaces standard in finite
elements (and u is replaced by uh) R(u) is computed only for each element interior
£le. The general form of these (consistent) stabilization techniques is

a(w,u) + c(a;w,u) + (w,au)

(w,s) + (w,h) r^ (2.56)

stabilization term

where f(w) is a certain operator applied to the test function, r is the stabilization
parameter (also called intrinsic time), and ^R(w) is the residual of the differential
equation, see (2.55). The stabilization techniques are characterized by the definition of
p(w) . Here the Streamline-Upwind Petrov—Galerkin (SUPG) and the Galerkin/Least-
squares (GLS) methods will be presented, see for instance Codina (1998) for a general
presentation.

Remark 2.10. Note that in this section we have introduced the reaction, or
production, term in the original convection—diffusion problem. This is done
because now stabilization techniques usually treat both equations, (2.la) and
(2.54), in a uniform manner. Specific analyses of stabilization techniques for
the convection—diffusion—reaction equation can be found in Tezduyar and Park
(1986), Harari and Hughes (1994), or Idelsohn et al. (1996) among others.

2.4.1 The SUPG method

This stabilization technique is defined by taking

3>(w) = a • Vtu, (2.57)

which, in fact, corresponds to the perturbation of the test function introduced in the
SU method, see (2.53). Note that this method corresponds to the standard weak forms
(2.5) or (2.7) with the SU test function (2.51) consistently applied to all terms of the
equation. Thus, since the space of the test functions does not coincide with the space
of the interpolation functions, this is in fact a Petrov—Galerkin formulation.

The restriction of the weak form (2.56) for the SUPG method, that is with the
perturbation defined in (2.57), to the usual finite dimensional subspaces leads to the
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discrete problem that must be solved: find uh € Sh such that

a(wh,uh) + c(a;wh,uh) + (wh,auh)

T[° •Vuh - v (vVuh )+ auh - s] dtt

= (wh,s) + (wh, h) rN for all wh € Vh, (2.58)

where the stabilization parameter r can be defined as

r - i//||a||2 (2.59)

with v given in (2.49) for 2D and v — (3ah/2 in lD. Section 2.4.3 discusses in more
detail the definition of r.

Remark 2.11 (Exact nodal solutions in lD for convection—diffusion). For the
convection—diffusion equation discretized with linear elements, the stabilization
term reduces to

because second derivatives of uh cancel out. The difference operator acting on
uh is identical to the one obtained with the non-residual formulation presented
in Section 2.3.3.1. Thus, ft = cothPe — l/Pe or r = (h/2a) (coth Pe – l/Pe)
produce the exact nodal solution on a uniform mesh in lD.

For quadratic elements, however, the stabilization term becomes

T[a-Vuh -V . (vVu h )–s ]dSl . ,

and the second derivatives must be accounted for in the element interiors. More-
over, as previously observed in Section 2.3.3.2, the intrinsic time r must be
different for mid-side, rm, and corner, rc, nodes. The parameters computed
previously, see (2.47), will not produce the nodally exact solution on a uniform
mesh when used in (2.58) because the difference operator has changed. In fact,
taking into account these two parameters, one for the mid-side nodes and the
other for the corner nodes, the difference equations associated with the weak
form (2.58) become:
1. At a mid-side node,

2. At a corner node,

Qav \ / uj+-2~
4ft

-2(,+rc a') ' +(.+rc .') = 0.
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Fig. 2.13 SUPG (solid line) and SU (dashed line) solutions of the convection—diffusion
problem (2.60) at Pe = 5 using a uniform mesh of 10 linear elements (left) and five quadratic
elements (right). The dotted line shows the exact solution.

Note that the source term is taken equal to zero in order to simplify the ex-
pressions. However, this analysis can be extended to constant source terms as
previously done in Section 2.3.3.2. Imposing now that the coefficients multiply-
ing the nodal values are equal to the coefficients in the exact difference scheme,
see Section 2.2.4, the optimal parameters are obtained: rm = Q h/(2a) with, as
always, /3 = cothPe - l/Pe; and rc = 0C h/(2a) with

7)e~2/>e
,-6Pe

3) + (-7Pe - (7Pe -

With these parameters, exact nodal solutions are obtained. That is, Figure 2. 12
is reproduced exactly with the SUPG formulation. The above parameters were
originally proposed by Codina (1993b) who used the concept of linear differ-
ence equation associated with the homogeneous linear convection—diffusion
equation, see Remark 2.7, in order to determine them.

As noted earlier, the SUPG formulation performs better than the original SU tech-
nique. The influence of the consistent formulation can be noticed with a simple
modification of the source term. Numerical solutions of the convection—diffusion
problem,

aux – vuxx =

at x = 0 and a- = 1,
(2.60)

are compared with the exact one in Figure 2.13.
One important issue in the SUPG method is the definition of the stabilization

parameter r. The stability and convergence analysis of this method (see Johnson,
Na'vert and Pitkaranta, 1984) allows us to determine the behavior of r. The fact that
the added stabilization term, see equation (2.58), is not symmetric introduces technical
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difficulties in establishing the stability of SUPG. This is avoided in the Galerkin/Least-
squares stabilization technique because it introduces a symmetric stabilization term
in a consistent manner.

2.4.2 The Galerkin/Least-squares method

The GLS technique is defined by imposing that the stabilization term in (2,56) is an
element-by-element weighted least-squares formulation of the original differential
equation. This corresponds to the following choice for the operator applied to the test
function:

3>(w) = £(w) = a • Vw - V -(i/Vw) + aw. (2.61)

With such a definition of operator O5, the weak form that must be solved is: find
uh £ $h such that

a(wh,uh) +c(a;wh,uh) + (wh,auh) + V f L(wh)T [£(uh] - s] dtt
*?J&

= (wh,s) + (wh,h)TN for all wh € Vh. (2.62)

This equation can also be written, for the steady convection—diffusion-reaction equa-
tion (2.54), as

a(wh,uh) + c(a; wh,uh) + (wh,a uh)

+ awhTa-Vuh- V -

= (wh,s) + (wh,h)TN + ̂ 2 I [a-Vwh - V -(vVwh) + (Twh]rs, (2.63)
e '™e

where it is important to notice that the stabilization term that affects the l.h.s. is
symmetric. This symmetry is a major advantage in establishing stability.

From a practical point of view there is no major difference between SUPG and
GLS methods. In fact, both methods are identical for convection-diffusion (no reac-
tion) and with linear elements (the second-order derivatives are zero in the element
interiors). Moreover, the qualitative influence of each term in the definition of P,
equation (2.61), may be interpreted as follows:

y(w) = L(w) = a- Vw - V'(i/Vw)+ aw .
SUPG 0 Galerkin

The first term corresponds to the SUPG stabilization, the second term is zero for linear
elements, and the third term is a Galerkin weighting. Thus, for linear elements and
a constant positive reaction, GLS is SUPG with the Galerkin term weighted 1 + a r
times more. This implies that the instabilities introduced by Galerkin are a little more
amplified in GLS compared with SUPG. See Figure 2.14 for a comparison of these
methods.
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-e——O-

o SUPG solution
- -0- GLS solution
-o- SGSsolutipn

exact solution
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Fig. 2.14 Comparison between SUPG (solid line), GLS (dashed line) and SGS (dash—dot
line) solutions of the convection—diffusion-reaction problem (2.54) for a = 1, v = 10–2,
<T = 10 and a uniform mesh of 10 linear elements. The dotted line shows the exact solution.

Remark 2.12. This minor problem of the GLS stabilization technique is over-
come in the simplest version of the sub-grid scale (SGS) method, see Section
2.5.3, because in this case the stabilization operator involves the adjoint op-
erator, £*, of £, namely 7(w) = —L*(w) = a-Vw; + V-(j/V«;) — aw.
Consequently, following the same rationale as before, in this case the Galerkin
term is weighted by 1 — a r and thus has less influence than in SUPG.

2.4.3 The stabilization parameter

The parameter r plays a major role in stabilization techniques. Note first that r is in
fact a stabilization coefficient matrix, as noted earlier for quadratic elements or more
typically for systems of differential equations, see for instance the original paper of
Hughes and Mallet (1986a) or more recently Codina (2000). Here the scalar lD
convection—diffusion-reaction equation (2.54) is used for illustration purposes.

For scalar equations a number of definitions of parameter r have been proposed
and tested (see for instance Tezduyar and Ganjoo, 1986; Tezduyar and Osawa, 2000).
Here, however, only three are recalled.

First, superconvergence (in the form of nodally exact results) is obtained for linear
elements in lD for convection—diffusion, see Remark 2.11 and Section 2.2.2, if
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This property can be generalized for quadratic elements (Remark 2.11) but not for
higher dimensions or general convection—diffusion systems.

It is obvious that r must vanish when the mesh is refined (no stabilization is
necessary for a fine enough mesh). In fact, convergence is affected by the asymptotic
behavior of r . An error analysis allows us to determine the structure of the stabilization
coefficient as a function of the discretization (mesh size h) and the parameters in the
differential equation (convection velocity a, diffusivity v and reaction a).

Second, an algebraic analysis is the basis of Codina's (2000) definition of r,

h / 1 h ~l

- (2-64)

which corresponds with the second-order accurate formula presented by Shakib,
Hughes and Johan (1991) based on a local truncation error analysis.

Third, Shakib and co-workers propose the fourth-order accurate formula

2a\2 /4 i / \2 2V
1/2 f t / , 9 2 1 / 2

T
, „+ 9 s? +" =^1 + ̂  + ^CT • (Z65)

An asymptotic analysis near the different limits (i.e., Taylor series expansions for
Pe = 0, Pe = oo, a — 0 and a = oo) shows the superior convergence of (2.65) to the
theoretical values compared with (2.64). However, the fourth-order accuracy does not
extend to higher dimensions or general convection—diffusion systems. Nevertheless,
numerical experiments indicate that (2.65) presents slightly lower errors (in the C 2
norm) compared with (2.64).

It is important to note that for higher-order finite elements, apart from the results
discussed in Section 2.2.4 and Remark 2.11 (see also Franca, Frey and Hughes, 1992;
Codina, 1993b), no optimal definition of r exits. Numerical experiments seem to
indicate that for finite elements of order p the value of the stabilization parameter
should be approximately r/p.

Finally, note that this chapter has focused on convection—diffusion. Reaction has
been added in some cases but diffusion-reaction problems are not discussed in detail,
see Harari, Frey and Franca (2002) for the definition of stability parameters in such
problems. The proper definition of the stabilization parameter is important in practical
computations. Thus it must be adapted to the equation under consideration and to
non-uniform meshes (element-by-element evaluation).

2.5 OTHER STABILIZATION TECHNIQUES AND NEW TRENDS

The subject of stabilization methods for convection-dominated transport problem is
still an area of active research. Alternative approaches to the stabilization techniques
discussed so far have been proposed in recent years and new trends are emerging.
In this section we shall present a brief overview of three alternative stabilization
techniques to SUPG and GLS and introduce a new promising technique based upon
the so-called variational multiscale method.
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2.5.1 Finite increment calculus

An alternative approach for deriving stabilized formulations for convection-diffusion
and fluid flow problems has been suggested by Onate (1998) under the name finite
increment calculus. The basic idea in this method is that most stabilized numerical
schemes can be derived by applying the standard Galerkin formulation to a so-called
stabilized form of the governing differential equations of the problem. These equa-
tions are obtained by invoking higher-order balance (equilibrium) statements on a
finite (as opposed to infinitesimal) domain.

We shall illustrate the process for a ID convection—diffusion problem. The clas-
sical balance equation for this problem is given in (2.16) and reads

aux — vuxx = s(x).

For simplicity, we shall assume that the convection velocity a is constant. The idea is
to replace the above balance equation by a higher-order one derived on a space slab
(x — 6, x) of finite dimension 6. Over such a finite subdomain, the unknown u, the
convective and diffusive fluxes and the source term may experience finite variations.
As a consequence, the higher-order balance equation takes the following form in
terms of the fluxes entering and leaving the subdomain:

x-6

where

pout
* conv " ">

du

s(x) dx=- (s(x -6)+ s(x)) + 0(S3) = 8s(x) - T + O(63).
x-5 * 2. OX

This statement of equilibrium is easily seen to produce the higher-order balance
equation, which is approximated to first order by

r r\

- s(x)) = 0.

Note that the modified balance equation reduces to the standard form by assuming that
the dimension of the balance space slab is infinitesimal. In the presence of Dirichlet
conditions at both ends of the domain [0, L], application of the standard Galerkin
method to the higher-order balance equation produces the following consistent vari-
ational form:

6dw, . .. J
~ '
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in which the weighting function is identical in structure to an SU weighting func-
tion. Therefore, for suitable values of parameter <5, application of the standard
Galerkin method to the higher-order balance equation produces stabilized finite el-
ement schemes for convection—diffusion similar to those obtained with the Petrov-
Galerkin approaches discussed in the previous sections of this chapter. A similar
approach had been invoked earlier by Donea, Belytschko and Smolinski (1985) with
application to quadratic shape functions.

As shown by Onate and co-workers, the modified differential equation can be used
to derive a numerical scheme for iteratively computing the stabilization parameters in
a sort of model adaptivity procedure. Further details on the finite increment calculus
approach to stabilization and its application to convection—diffusion and fluid flow
problems can be found in Onate (1998) and Onate and Manzan (1999) and references
therein. A similar approach may also be found in the work of Ilinca, Hetu and Peletier
(2000).

2.5.2 Bubble functions and wavelet approximations

As amply discussed in the present chapter, the Galerkin method employing standard
finite elements is not a robust approach for the numerical modeling of transport
problems exhibiting multiscale behavior in the form of localized phenomena such as
interior and boundary layers. This has motivated the development of new methods
capable of dealing with phenomena involving both coarse-scale and fine-scale aspects.
In this context, p-type finite elements typically used in adaptive refinement procedures,
as well as other non-classical finite element procedures, such as elements enriched
with bubble or wavelet functions, have proven to provide an interesting alternative
to the previously described stabilized methods. In this section, we shall illustrate the
construction of finite element models enriched with bubbles or wavelet functions to
improve the resolution of localized phenomena and thereby enhance the stability of
solutions to convection-dominated problems.

2.5.2.1 Bubble functions Bubbles are functions defined on the interiors of fi-
nite elements which vanish on the element boundaries. Baiocchi, Brezzi and Franca
(1993) were the first to point out that the enrichment of the finite element space by
summation of polynomial bubble functions results in a stabilization procedure for
convection—diffusion problems that is formally similar to SUPG and GLS. Unfortu-
nately, standard (low-order) polynomial bubbles are not able to adequately resolve
thin internal layers with steep gradients or other small-scale phenomena. Then, the
concept of enriching the Galerkin finite element method with so-called residual-free
bubbles, see for instance Brezzi, Franca and Russo (1998) or Franca, Nesliturk and
Stynes (1998), or with element Green's functions, see Hughes (1995) or Hughes et al.
(1998), was introduced to provide a more general framework for the discretization of
problems involving multiscale phenomena.

The basic idea in bubble function methods is to decompose the solution of a given
boundary value problem into the sum of a coarse-scale solution and a fine-scale
one. The classical Galerkin finite element method is used to represent the coarse-
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scale response, that is the resolvable part of the solution for the given finite element
mesh. Bubble functions then take care of the fine-scale aspects of the solution which
cannot be resolved by the finite element mesh. Bubbles have a stabilizing effect
for convection-diffusion problems similar to that of the added diffusion method. A
simple application of the bubble function method as a stabilizing formulation for
convection-diffusion problems is described in Section 2.6.1.

2.5.2.2 Wavelet functions Recently, the finite element application of wavelets
has become an active research area, in particular, to model localization phenomena.
Like bubbles, wavelets are functions with local support. Wavelet elements have the
potential of capturing localized phenomena and computing multiscale solutions to
partial differential equations with higher convergence rates than conventional finite
element methods. Dahmen et al. (1997) provide an overview of recent progress in
the development and use of wavelet methods in the fluid mechanics area.

In the finite element solution of convection-dominated problems exhibiting inter-
nal or boundary layers, advantage can be taken of the properties of wavelet-based
approximations to achieve an accurate localization of such layers. When wavelet
approximations are combined with the Galerkin finite element method, the enhanced
accuracy is obtained at the cost of some computational complexity. In particular, the
computation of the numerical values of the wavelet functions and of their derivatives
at the quadrature points is not an easy task. Another delicate aspect of the method is
the prescription of the boundary conditions which is more complicated than for the
standard finite element method. Several methods have been suggested to implement
them, including Lagrange multipliers and penalty methods.

2.5.3 The variational multiscale method

The variational multiscale method introduced by Hughes (1995) provides the neces-
sary mathematical framework for the construction of so-called sub-grid scale models.
In its simplest form it is very similar to the sub-grid viscosity methods presented in a
series of papers by Guermond (1999a; 1999b). The idea here is again that standard
finite element approximations can only resolve the coarse-scale aspects of problems
involving multiscale behavior. The variational multiscale method is based on the
additive decomposition of the solution, u, on a coarse-scale component, u, which can
be resolved by the considered finite element mesh, and a fine-scale component, u',
which one attempts to determine analytically. Notice that the fine-scale solution, u',
actually represents the error, u — u, of the coarse-scale component, while u is the
resolvable scale approximated by the finite element method.

In order to simplify the exposition, the variational multiscale method is illus-
trated in the context of the convection-diffusion-reaction equation, see (2.54), with
homogeneous Dirichlet boundary conditions (and with the usual assumption of a
divergence-free convection velocity, a), see Hughes et al. (1998) for a complete ex-
position. The standard variational form of this boundary value problem is, as usual.
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find u € V such that

a(w. w) + c(a; w.u) + a (w, u) = (w, s) for all w £ V.

The additive decomposition of the solution, u = u + w', and test function, w =
w + w', is accompanied by the corresponding splitting of the functional space V =
V © V into a finite dimensional coarse-scale subspace and a necessarily infinite
dimensional fine-scale subspace. Note that all the previously presented functions
verify the homogeneous Dirichlet boundary conditions. Under these conditions the
weak form becomes

a(w + w'.u + u') + c(a\w + w'.u + u'] + a (w + w'.u + u'} = (w + w1 .sj.

which, by virtue of the linear independence of w and w', splits into two problems:

a(w.u} + c(a;w.u) + a (w.u)

+ a(w.u') + c(a;w,u') + a (w.u') = (w.s) Vw) € V. (2.66a)

a(w',u') + c(a;w'.u') + a (w'.u1)

+ a(w'.u) + c(a;w'.u) + a (w'.u) = (w'.s) Vw/ e V'. (2.66b)

The first problem governs the resolved scales and the second one the unresolvable
scales.

The objective now is to solve analytically the fine-scale problem (2.66b) as a func-
tion of the coarse-scale solution u. Then, this w', as a function of u, is substituted
in (2.66a) to obtain an equation for u. A Green's function technique would be ap-
propriate in some problems to obtain the fine-scale solution. However, the fine-scale
Green's function belongs to an infinite dimensional subspace and is non-local. It is
then standard to impose u' = 0 along the finite element edges in order to localize the
fine-scale problem in the interior of each finite element.

Then the Euler-Lagrange equations associated with the fine-scale problem (2.66b)
become

f n,c(u/) = -nf (c(u)-sl inir
< , l J (2.67)]y = o onre

where £(u) = a • Vu—V '(vVu}+au is the differential operator associated with the
original convection—diffusion—reaction problem, and II denotes the £ 2 projection onto
V. Note that this problem for u' is driven by the residual of the coarse (resolvable)
finite element solution. The simplest way to approximate the solution of problem
(2.67) is to assume that

u' = -r[£(u)-s], (2.68)

which obviously does not even verify the boundary conditions.
At this point we note, in view of the above assumption, that

a(w, u') + c(a- w, w') + a (w, u1)

= ]T / [-a-Vw- V'(vVw)+<rw]u'dtt = ̂ r(£*(w),u')Qe., (2.69)
«/ Ofc
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where the adjoint operator £ * (u) = — a • Vw — V • (u Vu) + au has been introduced.
Now, the approximation (2.68) is substituted in (2.69), which is used to write the
coarse-scale problem (2.66a) in a standard stabilization form

a(w,u] + c(a;w,u) + a (w.u) + ̂ Pr(-£*(w)).£(w) - s)fie = (w.s).
e

Note that this equation corresponds to the standard stabilized form (2.56) with 'P(w) =
—L*(w). This method is called sub-grid scale (SGS); it delivers similar results to
the SUPG and GLS techniques unless the reaction term is dominant, see Remark
2.12. Figure 2.14 presents a comparison of these methods. The results for quadratic
elements present a similar qualitative behavior and thus are not shown.

This method was proposed by Hughes (1995). A detailed presentation can be found
in Hughes et al. (1998) where better approximations to the solution of the fine-scale
problem (2.67) than the simplest algebraic approximation (2.68) are also discussed. A
rigorous development of this technique for systems of differential equations without
the restriction that u' = 0 along the element edges can be found in Codina (2000).
Note, however, that the potentiality of this techniques extends far beyond stabilization
techniques for convection-diffusion-reaction equations. See, for instance, Hughes,
Mazzei and Jansen (2000) or Hughes et al. (2001) where this technique is used in
turbulent flows to introduce modeling (Reynolds stresses) at small scales.

2.5.4 Complements

The idea of locally enriching the approximation basis in order to better reflect the local
character of the solution has also been exploited with success in other classes of meth-
ods. For instance, the so-called generalized finite element method, see Strouboulis,
Copps and Babuska (2000), which results from a combination of the standard fi-
nite element method and the partition of unity method introduced by Melenk and
Babuska (1996), also provides an efficient way to model localization phenomena (in-
ternal and boundary layers) with higher convergence rates than conventional finite
element methods. Similarly, modern mesh-free (or particle) methods pioneered by
Nayroles, Touzot and Villon (1992) may be used to enrich a finite element mesh where
needed without any need for remeshing, see Huerta and Fern andez-Mendez (2000).
Methods in this class include the Element-Free Galerkin (EFG) method developed by
Belytschko et al. (1994; 1996) and the Reproducing Kernel Particle Method (RKPM)
introduced by Liu et al. (1995). Also noteworthy is the h-p clouds method introduced
by Duarte and Oden (1996).

2.6 APPLICATIONS AND SOLVED EXERCISES

2.6.1 Construction of a bubble function method

In order to illustrate the use of the bubble function method introduced in Section
2.5.2.1, we consider the convection-diffusion equation with homogeneous Dirichlet
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boundary conditions. The standard Galerkin formulation of this problem consists of
the following: findwft € Vh such that Vw;'1 € Vh

a(wh,uh) +c(a\wh,uh) = ( w h , s ) .

In the bubble function method, each interpolation and test function, u h and wh, is
decomposed in the standard piecewise continuous polynomials of Galerkin finite
elements plus bubble functions:

uh =U^ + UB, and wh - wfe + wh
B,

where subscript G refers to the standard polynomial approximating function of the
Galerkin method and subscript B to the bubble part of the approximation, which is
required to take on zero value at element boundaries.

This last property of the bubble functions allows us to use the classical static
condensation procedure to extract the bubble part u # of the solution in each individual
element as a function of the piecewise polynomial part u G-

We shall illustrate this idea on the homogeneous version of the ID boundary value
problem (2.16). In ID the bubble function for a linear element is given by (1 — £ 2),
so that the decomposition becomes

(2.70a)

(2.70b)

where subscripts 1 and 2 characterize the end nodes of the linear element and subscript
3 refers to the bubble function. The weak form of the homogeneous (s = 0) problem
is given by

ha

wh

1,
~ 2 (

= 5<:

1 -£)w

i -O*

4-^11 + _(]

* + *<

\ c\ 7i f2\ ^+ 4 J M 2 + (l -4 Jws

1 + 0 tt>2 + (1 - ^2) W3
je -v

wau + wvudx = Q. (2.71)

By setting wh = w^, see (2.70b), one finds

from which we extract the value of parameter u 3 associated with the bubble function
in terms of the element nodal parameters:

ah Pe
U3 = -^-(«2 - Wl) = -- 7(1*2 - W l ) -

oV 4

This allows us to rewrite (2.70a) in terms of the nodal values as

0) til + (i + O(i - f (i - 0)



72 STEADY TRANSPORT PROBLEMS

Introducing this expression into the weak form (2.71) and now imposing w h = «;
one finds that the bubble function method delivers the following element matrices:

="/'Jo

QOX dx =

f Pe

a
2

— . 1 _l_ _M_

3
Pey _ l _ _

1 Pe\i
3

, Pe
1 + T/

A I 5a: dx dx dx= r ^ a*
"70 UA^W

\ dx dx dx dx I
h - l V

Comparing these element matrices with those derived in Section 2.2 for the Galerkin
formulation, one notes that the bubble function method only modifies the convection
matrix Ce of the linear element without affecting the diffusion matrix Ke. With these
results, and assembling in the usual finite element manner the contributions emanating
from both elements to which a given node belongs, one finds that the bubble function
method delivers the following discrete equation at an interior node j of a mesh of
uniform linear elements:

—Uj-i Pedh\

~3~2^)
+ U-

= 0.

This shows that bubbles have a stabilizing effect for convection-diffusion problems
similar to that of the added diffusion method. In fact, the added diffusion in the
previous equation corresponds to that given in (2.26) with the coefficient 0 given by
the doubly asymptotic approximation in (2.29).

2.6.2 One-dimensional transport

This example is concerned with the solution of the ID homogeneous convection-
diffusion equation with prescribed Dirichlet conditions at both ends of the domain
[0,1], namely w(0) = 0 and w(l) = 1. The problem is first solved using a mesh of 10
uniform linear elements and then repeated with five uniform quadratic elements. A
unit convection velocity is assumed and three values of the mesh Pe*clet number are
considered: Pe = 0.25,0.9 and 5.0. Figure 2.15 reports the results obtained with
linear elements using the Galerkin method, a full upwind approach, and the SUPG
method. The results obtained with quadratic elements are reported in Figure 2.16.
For small to moderate Pe, the exact solution varies rather smoothly over the entire
domain. However, as Pe is increased beyond unity, the solution has a boundary layer,
which cannot be resolved by the standard Galerkin method. This is in contrast with
the stable and accurate results obtained with SUPG. As anticipated, the full upwind
approximation delivers stable, but inaccurate, results due to an excess of numerically
added dissipation.
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' 0 0.1 0-2 0.3

Fig. 2.15 Galerkin (top-left), full upwind (top-right) and SUPG (bottom) solutions (solid
lines) for linear elements. Dotted lines show the exact solution for Pe — 0.25, 0.9 and 5.

Fig. 2.16 Galerkin (left) and SUPG (right) solutions (solid lines) for quadratic elements.
Dotted lines show the exact solution for Pe = 0.25, 0.9 and 5.
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2.6.3 Convection—diffusion across a source term

The previous example is further studied introducing a source term:

{ aux - i/uxx = We~5x - 4e~x forx€]0 ,1[

u(0) = 0andw(l) = 1.

Again, a unit convection velocity is assumed and the Pellet number is chosen as
0.25 or 5. Galerkin, SU (the non-consistent formulation) and SUPG are compared in
Figure 2.17 for linear and quadratic elements. GLS and SGS results are not shown
because they are almost identical to those of SUPG.

Fig. 2.17 Galerkin (top), SU (center) and SUPG (bottom) solutions (solid lines) for linear
(left) and quadratic (right) elements. Dotted lines show the exact solution for Pe = 0.25 and 5.
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i.o

0.2

0.0 u=0 1-0 x

Fig. 2,18 Convection of discontinuous inlet data skew to the mesh: problem statement.

2.6.4 Convection-diffusion skew to the mesh

One of the major contributions in the stabilization of steady convection-diffusion
problems is the concept of anisotropic balancing diffusion or streamline upwind test
functions discussed in Section 2.3.3.3. The equivalence between added diffusion and
upwinding is simple in ID but its blunt extension to multiple dimensions leads to
excessive crosswind diffusion. This is observed in the present example. Galerkin and
SUPG formulations are compared with an artificial diffusion method; that is, adding
a scalar artificial diffusivity defined by equation (2.59), namely v — r ||a||2, with r
determined by any of the definitions in Section 2.4.3. Note that the present artificial
diffusion method is based on a scalar diffusivity. Thus, it should not be confused
with the SU method which possesses the tensorial structure indicated in (2.48) and is
further illustrated in Remark 2.9.

The problem statement is depicted in Figure 2.18 where the unit square is taken as
the computational domain, Q = [0,1] x [0.1]. This 2D test case has been widely used
to illustrate the effectiveness of stabilized finite element methods in the modeling of
convection-dominated flows. A mesh of 10 by 10 equal-sized bilinear elements is
considered.

The flow is unidirectional and constant, |ja|| = 1, but the convective velocity is
skew to the mesh with an angle of 30°. The diffusivity coefficient is taken to be
10–4, corresponding to a mesh Pe"clet number of 104. The inlet boundary data are
discontinuous and two types of boundary conditions are considered at the outlet:

o Downwind homogeneous natural boundary conditions. The results for this case
are displayed in Figure 2.19. Given the elevated value of the P eclet number, the
solution is practically one of pure convection. The Galerkin method is not able
to satisfactorily resolve the discontinuity and produces spurious oscillations.
The artificial diffusion method and the SUPG method yield better results, but
SUPG introduces less crosswind diffusion.
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Fig. 2.19 Galerkin (left), artificial diffusion (center) and SUPG (right) solutions for the 2D
convection—diffusion problem with downwind natural conditions.

Fig. 2.20 Galerkin (left), artificial diffusion (center) and SUPG (right) solutions for the 2D
convection-diffusion problem with downwind essential boundary conditions.

o Downwind homogeneous essential boundary conditions. Here, we impose
u = 0 on the outlet portion of the boundary. The solution now involves a thin
boundary layer at the outlet. As shown in Figure 2.20, the crude 10 by 10 mesh
has difficulty capturing the details of the solution. The Galerkin results are
wildly oscillatory and bear no resemblance to the exact results. Better results
are obtained with the stabilized formulations. The artificial diffusion technique
introduces excessive numerical diffusion.

2.6.5 Convection-diffusion-reaction in 2D

On the same unit square domain as in the previous example, ft = [0.1] x [0,1], the
influence of the convection and reaction terms are compared for the Galerkin, SUPG,
GLS and SGS formulations. As in the previous example, convection is taken skew
to the mesh with an angle of 30° and the diffusion is small, v = 10~4. Two cases are
studied: first the convection-reaction-dominated case, ||a|| = 1/2 and a — 1, and
then the reaction-dominated case, ||a|| = 10 ~3 and a = 1. The results are shown in
Figures 2.21 and 2.22. The stabilized methods produce similar results. Nevertheless,
as noted in Remark 2.12 and Section 2.5.3 in the presence of reaction (in particular
for the reaction-dominated example, see Figure 2.22) SGS reduces the oscillations
near the boundary layers.
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Fig. 2.21 Galerkin, SUPG, GLS and SGS (from left to right and top to bottom) solutions
for the 2D convection-reaction-dominated problem.

Fig. 2.22 Galerkin, SUPG, GLS and SGS (from left to right and top to bottom) solutions
for the 2D reaction-dominated problem.
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Fig. 2.23 Galerkin and SUPG solutions of Hemker problem for linear (left) and quadratic
(right) elements.

2.6.6 The Hemker problem

The so-called Hemker problem is studied, which consists of solving the convection-
diffusion equation

9 , . . / N r , -,!x— — h v-z—z = — Z/TT COS(TTX) — ?ra:sm(7rx) on I — 1, Ij,
ox ox*

with space-dependent convection velocity and source term. The boundary conditions
are specified as

u(-l) = -2; w ( l ) = 0 .

The exact solution is

u(x) = cos(Trar) +erf(x/y(2i/))/erf(l/>/(2i/))

and has a turning point in the middle of the domain.
We take v = 10~10 and use a mesh of 20 uniform linear elements (h = 0.1). The

problem is first solved in the Galerkin formulation. The numerical solution is depicted
in Figure 2.23 in comparison with the exact solution. Node-to-node oscillations
extending over the whole computational domain characterize the Galerkin approach.
The solution is then repeated using the SUPG formulation. Since the convection
velocity a(x) = x is negative on ]-l, 0[ and positive on ]0, 1[, care must be taken
to add a positive diffusion everywhere in the mesh. The SUPG results are displayed
in Figure 2.23. Though the SUPG method succeeds in removing the oscillations in
the smooth part of the solution, residual oscillations remain near the turning point
where a near-discontinuity is present. Additional nonlinear viscosity should be added
locally to suppress these residual oscillations. This aspect will be treated in detail in
Chapter 4.



3

This chapter addresses the development of time-accurate methods for solving transient
convection problems using finite elements. First, a brief review is presented of the
method of characteristics and of its use in the finite element context. The chapter
then proceeds with the presentation and analysis of classical, first- and second-order
accurate, time-stepping algorithms. This is followed by the description of higher-
order methods which indirectly account for the role of the characteristics in convection
problems. The last part of the chapter considers the coupling of a finite-element-based
spatial discretization and high-order accurate time-stepping algorithms. Emphasis
is placed on the use of least-squares-type finite elements to ensure stability when
non-dissipative schemes are used for marching in time.

3.1 INTRODUCTION

Time-dependent problems describing convective transport are governed by hyperbolic
equations and the characteristics play a dominant role in their solution. This has
important consequences as regards the development of accurate numerical methods
for solving evolutionary problems in this class. So, space and time being linked
through the characteristics, the discretization of one certainly has an influence on the
discretization of the other. In fact, an accurate spatial representation can be quickly
eroded when it is transported in time if the time integration algorithm is not able to
propagate the information along the directions prescribed by the convection problem.

In principle, one could circumvent the issue of convecting the information along
the streamlines by resorting to a Lagrangian formulation. In such a moving coordinate
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system, convective terms disappear from the governing equations. Unfortunately, a
purely Lagrangian description is in general not practicable in fluid flow problems
because of excessive distortions of the computational mesh. However, a number
of numerical methods based on the concept of convecting the information along
the streamlines have been developed and applied in the finite element modeling of
convective transport using a fixed (Eulerian) element mesh. The chapter is organized
as follows.

In Section 3.2, we define the strong form of the initial boundary value problem for
convective transport. Then, Section 3.3 illustrates the role of the characteristics in
the solution of these problems. Several methods exploiting the characteristics are de-
scribed. This includes semi-Lagrangian,Lagrange-Galerkin and characteristic-based
methods. Their common feature is to exploit the fact that the solution is constant along
a particle path or a characteristic. Unfortunately, finite element methods exclusively
based on the characteristics are rather difficult to implement and expensive to use.
This is the reason why direct time integration of the convection equations is often
preferred. However, it must be based on suitable time-stepping schemes. In Section
3.4, we review the properties of second-order time-stepping algorithms classically
used to produce the transient response of unsteady problems. Their accuracy analysis
in Section 3.5 reveals that such algorithms are not optimal for convection problems.
This is because second-order methods are unable to take into account the directional
character of propagation of information in convective transport. In particular, a rapid
fall-off in accuracy occurs as the time step is increased. Moreover, in explicit finite el-
ement schemes the stability range is reduced with respect to the corresponding finite
difference schemes. Attention is therefore focused on higher-order time-stepping
schemes capable of indirectly taking into account the propagation of information
along the characteristics.

One of the indirect methods which exploit the characteristics in the numerical so-
lution of convective transport problems, the Taylor-Galerkin method, is described in
Section 3.6. It represents an attempt to simulate by a Taylor series in time the fact
that the solution of convective transport problems is constant along the characteris-
tics. This Taylor series is usually extended to third or fourth order. The discussion of
time-stepping algorithms closes with an introductory presentation in Section 3.7 of
monotonicity-preserving schemes. Such schemes are used near sharp solution gra-
dients to suppress the residual oscillations that linear stabilization techniques cannot
remove.

We then address the problem of coupling highly accurate time-stepping algo-
rithms and finite element spatial discretization techniques based on the classical C°-
continuous spatial representation. In Chapter 2 we have shown that the Galerkin
finite element method is not optimal to model steady transport problems in which
convective effects are dominant. Stabilization techniques capable of introducing suf-
ficient numerical dissipation are needed to remedy the lack of numerical stability of
the Galerkin formulation. In the present context of transient problems, the required
amount of numerical damping can be provided either by the use of dissipative time-
stepping methods or, as in Chapter 2, by the finite element spatial discretization. In
Section 3.8 least-squares-based finite elements are introduced to provide the numer-



PROBLEM STATEMENT 81

ical dissipation needed to achieve stable results with non-dissipative time-stepping
algorithms. To conclude the discussion of discretization procedures for convection
problems, we briefly introduce in Section 3.9 the discontinuous Galerkin method
and then discuss space—time formulations in Section 3.10. Finally, representative test
problems in ID and 2D are solved in Section 3.11 to illustrate the use of time-accurate
finite element methods in the numerical solution of convective transport problems.

3.2 PROBLEM STATEMENT

Before discussing numerical algorithms, we shall introduce the strong form of the
linear convection problems treated in this chapter. In the so-called conservation law
farm, the equations governing unsteady convective transport are

ut + V-f(u)=s(x,t) mftx]0,T[, (3.1a)
u(x,0} -u0(x) onf iaU = 0, (3.1b)

U = UD onrgx]0,r[, (3.1c)

-f-n = h onr#x]0,T[, (3. Id)

where now the solution u and the source term s are a function of time. Note that in
the hyperbolic case we cannot specify boundary conditions on the outflow portion
of the boundary F = <9Q of the domain 0. As in Chapter 2, F m denotes the inflow
portion of the boundary (see Remark 2.1). We employ the partition Fin = Fg U F^
to identify the Dirichlet and the Neumann portions of the inflow boundary.

The value of u is specified on the Dirichlet portion of the inflow boundary, while
the inlet normal flux is prescribed on the Neumann portion. The vector-valued flux
function f ( u ) can be defined in terms of the convection velocity a by

f ( u ) = au. (3.2)

If the convection velocity a is independent of u, the problem is linear. Nonlinear
problems are studied in Chapter 4.

When the convection velocity a is divergence free, use can be made of the identity

V « ( o u ) = u V-a + a- Vu (3.3)

to recast problem (3.1) in the convective (also termed advective) form:

ut + (a-V)u = s inftx]0,r[, (3.4a)
u(x, 0) = u0(x) on ft at t = 0, (3.4b)

U = UD onFgx]0 ;T[ (3.4c)

-au-n = h onrj?x]0,r[,. (3.4d)

Equations (3.la) and (3.4a) describe the convective transport of a quantity u whose
speed of propagation is given by the vector function a(x.t).
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The numerical solution of the above initial boundary value problems clearly in-
volves a double discretization process, namely the spatial and temporal discretiza-
tions. While the former will be performed here by the finite element method, two
broad classes of methods will be employed to trace the temporal evolution of the
solution of convection problems. The first class is based on the characteristics and
exploits them to transport the information in time. The second class of methods is
based on a standard coordinate system and makes use of time-stepping algorithms
to advance the solution from one time level to the next until the final time for the
problem is reached.

3.3 THE METHOD OF CHARACTERISTICS

In the present section, we recall the basic properties of convection equations with an
emphasis on the role of the characteristics in their solution. We then review finite-
element-based algorithms capable of producing time-accurate solutions of convective
transport problems through a direct use of the characteristics. See also the introductory
paper by Donea and Quartapelle (1992).

3.3.1 The concept of characteristic lines

For first-order equations, such as the convection equations studied in this chapter, the
prototype linear partial differential equation (PDE) is of the form

Ut + aux — s. (3.5)

where a and s may depend on x and t. We may interpret this equation as follows: for
a given solution u(x. t) and at a given space-time point (x. £), the total derivative of
u with respect to time in the direction defined by the slope

dx/dt = a

is equal to s. In this way, we have introduced the concept of propagation of the
information u, with a speed o, as a function of the considered space-time point (x. t).
For linear PDEs with constant coefficients the speed of propagation is constant.

When the PDE involves the physical concept of propagation it is said to be hy-
perbolic and the direction dx/dt — a is termed the characteristic direction. We thus
have the following result: any first-order PDE is hyperbolic. If the PDE is linear,
the characteristic curves are fixed in the (x. t) plane, independent of the solution
u(x. t}. Furthermore, if the linear PDE has constant coefficients, the characteristics
are straight lines. Nonlinear first-order PDEs in which the speed a depends on the
solution u are studied in Chapter 4. To further illustrate the concept of transport
typical of first-order PDEs, let us consider the homogeneous form of equation (3.5)
with a constant. The change of variables

£ = x — at. 77 = x + at



THE METHOD OF CHARACTERISTICS 83

u(x,t)

0 x
Fig. 3.1 The concept of characteristics: du/dt = 0 and consequently u is constant along
the lines x — a t + constant.

induces the transformation

—a a

Thus, the PDE ut + aux = 0 becomes

whose general solution is

= f(t)=f(x-at),

where / is an arbitrary function. It follows that the solution u(x, t) at point x and
time t is equal to the solution at time t — At at the point x

u(x, t} = u(x — aA£, t — At). (3.6)

In other words, the solution is a rigid transport in time of the spatial profile of u.
For this reason, the name transport equation is given to equation (3.5). The concept
of transport along the characteristics is illustrated in Figure 3.1 which shows how an
initial distribution u(x, 0) = UQ(X) of the unknown undergoes a uniform translation
along the x coordinate axis as time goes on.
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3.3.2 Properties of the linear convection equation

To provide a basis for the discussion of characteristic-based finite element algorithms,
we recall in this section the basic mathematical properties of the unsteady convection
equation. For this purpose, we consider first the case of a scalar quantity u transported
by a prescribed convection velocity field a(x, t) in the presence of a known source
term s(x, t}. The initial boundary value problem for the quantity u is assumed linear
and defined as in (3.4).

As seen previously, the analytical solution of this linear initial boundary value
problem at a given point in space and time can be determined with the aid of the
concept of characteristic lines associated with the velocity field a(x, t ). The idea is
to replace the operator d/dt + a • V in the l.h.s. of equation (3.4a), which represents
the material derivative in the Eulerian description, by a simple time derivative using
the Lagrangian viewpoint.

Accordingly, for a given space-time point (x,r), where x G ffcandr € ]0,T[, one
determines the characteristic line X = X(x,r;t) passing through the considered
space-time point by solving the ordinary (vector) differential equation

(x, r- t) = a(X(xt r; t)), t e ]0, T[, (3.7a)

subject to the condition
X(X,T;T)=X. (3.7b)

With reference to the Lagrangian point of view, X(x,r;£) can be interpreted
as providing the position at time t of a fluid particle transported by the convection
velocity field a, which occupies the spatial position x at time r . In other words, (3.7a)
defines the particle trajectory. Along this trajectory, the material (or total) derivative

du du ___ = _+„. Vu,
which is the l.h.s. of the convection equation (3.4aX reduces to a simple time derivative.
In fact, by definition, the material derivative is the time rate of change felt by an
observer moving with the material particles.

It is worth noting that equation (3.7a) is generally nonlinear, except when the
convection field has a specific spatial dependence of the form o(x, t) = ot(t) +(3(t) x,
where a(t) and 0(t) are arbitrary functions. Excluding such a situation, the presence
of the nonlinearity is the price to pay for the reduction of the linear unsteady convection
equation (3.4a) to an ordinary differential equation.

The integration of equation (3.7a) proceeds from t = r backwards, until the
characteristic curve either intersects the boundary Fin or reaches the initial time
t — 0, see Pironneau (1989) and Douglas and Russell (1982) for details:

o The intersection of the characteristic with Tin occurs at a time tr(x,r) thatdepends
on the considered characteristic curve. If the intersection point is denoted by
XT = Xr(x, r), one has

r) = X(x,r; <r) -
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It follows that the solution at the considered space-time position (x, r) depends on
the value UD ( XT , *r ) prescribed at the boundary point X r • To determine U(X,T),
the governing equation (3.4a) is written in the so-called characteristic form. We
shall denote the value of the unknown along the characteristic curve X(x, r; t) by
U(t) := u(X(x, r; i), t), or, omitting the explicit indication of the dependence
on (x, r) to simplify the notation, by U(i) = u(X(t), t}. In characteristic form
equation (3.4a) along X(t) reduces to the following linear ordinary differential
equation:

(3.8)

where S(t) = s(X(t),t). Equation (3.8) must then be integrated up to t = r
subject to the initial condition

at the intersection time with T-m. Thus, for characteristic lines intersecting Fm the
solution reads

f S(t)dt.
Jtr

u(a,r) = U(r) = uD(Xr,tr) + S(t)dt. (3.9)
Jtr

o On the contrary, when the characteristic curve reaches the plane t = 0, one has
X(x,T]Q) £ H Then, the solution u(x,i) is determined uniquely by integrat-
ing the characteristic equation (3.8) with the initial condition U(G) = uo(X(Q))
stemming from the original initial condition (3.1b). This gives

U(X,T) = U(r) = u0(X(Q}) + S(t)dt. (3.10)r
Jo

Remark 3.1. In this chapter we shall assume differentiability of u(x, t) . How-
ever, if the characteristics transport the initial condition, one could easily con-
struct a "solution" transporting initial non-smooth data. In fact, any singularity
in the initial data is transported along the characteristics. This is a fundamental
property of linear hyperbolic equations. The concept of non-smooth solutions
of hyperbolic equations, which is intimately related to the concept of weak so-
lutions, will be discussed in the next chapter. Nonlinear hyperbolic equations
may have non-smooth solutions even if initial data are smooth.

Remark 3.2 (Equation in conservation form). The analysis just described also
applies when the linear hyperbolic equation is formulated in the conservation
form (3. la), that is

ut + V-(au)=s, (3.11)

where the velocity field a(x,t) is still assumed to be a known quantity. In view
of the identity (3.3), and introducing the quantities

b(x,t) = V-a(x,t) and B(t) - b(X(t),t),
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equation (3.11) becomes along the characteristic X(t)

— + B(t)U = S(t), (3.12)
at

where again S (t) = s(X(t),t). Due to the additional variable coefficient term,
B(t), the solution for the case where the characteristic line crosses the domain
ft at t = 0 is

u(aj,r) = C - O « * (X(0))+ S ( * ° ^dtdt . (3.13)
L A ) J

A similar expression is obtained when the characteristic intersects the boundary
Tin, see Pironneau (1989, pp. 75-76).

Remark 3.3 (System of hyperbolic equations). In the case of a system of
coupled hyperbolic equations, such as the Euler equations of gas dynamics to
be discussed in Chapter 4, the problem cannot be reduced to a standard ordi-
nary differential problem along the characteristics, unless the coefficients of
the equations are constants. It is actually still possible to introduce character-
istic curves passing through a given space-time point (x, r), the number of
such characteristics being in general equal to the number of components in the
governing system. However, the original system of coupled equations written
along these characteristic curves takes the form of an ordinary differential sys-
tem of a rather peculiar nature. Its solution is in fact defined by a system of
integral equations in which each component of the vector unknown involves
integration along a different curve, see John (1991, pp. 46-52) for a detailed
description of the lD case.

Remark 3.4 (Nonlinear convection equation). Let us briefly extend the above
concepts to the case of a nonlinear convection equation of the form

ut + a(u)' Vu = s, (3.14a)

where a(u) = df(u)/du. This is the quasi-linear form of a nonlinear scalar
conservation law. Here, the source term s may also depend on the unknown.
If the solution remains smooth and the equation holds in the classical sense,
the characteristic curve X(t) reaching the space-time point (x, r) satisfies the
following ordinary differential equation with final condition:

)), X(T) = x. (3.14b)

Due to the dependence of the convection field on the unknown u, both equations
(3.14) must be solved in a coupled manner. It is not possible to solve equation
(3.14b) first in order to obtain the characteristic curves separately from the
solution of the convection equation (3.14a) itself.

Assume that the foot of the considered characteristic lies inside fi at t = 0,
so that the initial condition for u has to be imposed. If one introduces the
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unknown U(t) := u(X( t) , t) , with 0 < t < r, the equation and condition
(3.14b) become

X (r ) = x.. (3.15a)
at

whereas the nonlinear convection equation (3.14a) expressed in characteristic
form and the associated initial condition take the form

^ - s(U(X(t},t)-t], [/(O) - tio(JT(0)). (3.15b)
at

Equations (3.15) represent a coupled system of first-order ordinary differen-
tial equations to be solved over the interval 0 < t < r and supplemented by
conditions at both ends of the integration interval. System (3.15) therefore
represents a two-point boundary value problem for a first-order system with
separated end-conditions. For solving such a problem, use can be made of the
numerical technique proposed by Quartapelle and Rebay (1990) in combina-
tion with Newton iterations. The initial condition consists of a homogeneous
relationship between the initial values of U and X in the form

which is a nonlinear equation with respect to the unknown X (0) whenever
UQ(X) is a nonlinear function of its argument. Summarizing, the nonlinearity
of the convection equation does not preclude a complete reduction of the partial
differential problem to an ordinary differential one. However, the nonlinear
convection equation introduces two extra difficulties:

1 . The equation defining the characteristic curve and the governing equation
in characteristic form, which are in general both nonlinear, must be solved
as a coupled set of equations;

2. The initial condition is a coupled and nonlinear condition for the unknowns
(X, U) of the system.

3.3.3 Methods based on the characteristics

In this section we briefly present finite element methods exploiting the characteristics
for solving the convection equation (3.4a) with a space-time variable convection field
a(x. t). A more complete review of characteristic-based finite element methods can
be found in a paper by Donea and Quartapelle (1992). The reader interested in a
detailed exposition of such methods should consult the books by Pironneau (1989)
and Morton (1996).

3.3,3.1 Semi-Lagrangian method A popular method of characteristic type
specifically adapted to treat unsteady convection problems is the semi-Lagrangian
method introduced by Purnell (1976), Robert (1981; 1982), Pudykiewicz and Stani-
forth (1984) and Staniforth and Pudykiewicz (1985).
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dimensionless wave number dimensiontess wave number

Fig. 3.2 Accuracy properties in pure convection of the semi-Lagrangian scheme with cubic
interpolation: amplification factor modulus |G| (left) and relative phase error Burner/<j>exact
(right). C = ||a||A<//i is the Courant number, see Section 3.5.1

With reference to the linear convection equation (3.4a), let x be a mesh point and
un(x) the finite element solution obtained at time tn = nAt. At being the time
increment. The solution un+1(x) at the next time level tn+1 = tn + At is obtained
by first approximating equation (3.7a) defining the characteristic over the interval
]tn, tn+1 [ with second-order accuracy using the mid-point rule. This gives

x) - a(x - ̂ At.

This nonlinear equation for the displacement vector AX can be solved iteratively
using the recursive scheme

= a(x - i , tn+1/2) At (3.16)

and an interpolation formula to evaluate a between mesh points. Then, the charac-
teristic equation (3.8) is approximated with second-order accuracy in time, according
to the relationship

un+1(x)-un(x-&X)
Al

,n+l /, sn(x- AX)]

Here sn(x) = s(x,tn) and the quantities un(x - AX) and sn(x - AX) are
evaluated from un(x) and sn(x) by interpolation. In practice, bi-cubic splines have
been considered for two- and three-dimensional calculations. The value of AX(x)
at the previous time step can be used as a first guess to solve the nonlinear system
(3.16) at each node. The convergence of the iterative procedure (3.16) is guaranteed
by the fixed-point theorem provided that a(x. t n+1/2) and its first partial derivatives
are continuous, the time step At is sufficiently small and the first guess sufficiently
close to the actual solution.

The accuracy properties of the semi-Lagrangian method with cubic interpolation
are reported in Figure 3.2. They were derived, as explained in detail in Section 3.5,



THE METHOD OF CHARACTERISTICS 89

using Fourier mode analysis. The accuracy of a time integration method is usually
characterized by its amplification factor and its relative phase error. These quantities
are expressed in terms of the dimensionless wave number £ = k h, where k is the
wave number of the considered Fourier mode and h the mesh size.

In the present case of pure convection, the amplification factor for the exact solution
is Gexact = 1 (no damping). As can be seen from Figure 3.2, the semi-Lagrangian
scheme exhibits excellent amplitude response for dimensionless wave numbers in the
range 0 < £ < rr/4, which can be accurately resolved by the numerical method. Also
the phase response of the semi-Lagrangian method appears to be excellent at small
and intermediate wave numbers.

The same properties apply to the characteristic Galerkin method of Morton men-
tioned below. For its accuracy and efficiency the semi-Lagrangian method is widely
used in meteorological forecasting as well as in the modeling of environmental flows
using non-uniform Cartesian meshes, see for instance Staniforth and C ote (1991) and
Tanguay, Simard and Staniforth (1989) for practical applications of the method.

3.3.3.2 Lagrange-Galerkin methods Methods in this class also exploit the
property of constant solution along a fluid particle trajectory to approximate the total
derivative in the l.h.s. of (3.4a). The particle paths coincide with the associated
characteristic curves and are defined by equations (3.7). Lagrange—Galerkin methods
bear similarity with semi-Lagrangian methods, but are specifically adapted to the
use of a finite element spatial discretization based on the Galerkin projection. Two
variants of the basic Lagrange—Galerkin method are described next.

Direct integration along the characteristics: If the convection velocity a(x, t)
is known in advance over the entire time interval ]0, T[, the complete solution of the
linear convection equation (3.4a) can be determined as follows.

For a given triangulation of the domain Q, one constructs the characteristic curves
passing through all the nodes in the finite element mesh by approximating them as
continuous lines consisting of straight segments. Recall that the characteristics are
defined by equations (3.7). The nodal values of the unknown u at time t are then
obtained by evaluating integrals in equations (3.9) or (3.10) and using numerical
quadrature. A detailed description of a method of this kind is provided by Pironneau
(1981/82).

In nonlinear situations, the field a(u,x, t) depends on the solution itself, so that
it is necessary to advance the solution by increments from a given time tn to time
j.n+i _ ^n _j_ £^ where At is a convenient time step. As suggested by Pironneau
(1981/82), equation (3.4a) is integrated along trajectories drawn backwards from
(x.f1+1) to X(x.tn + 1 tn) using a suitable approximation for the characteristic
velocity a. Then, the standard Galerkin projection is employed to obtain the nodal
values of the solution at time tn+l. Both first-order methods, the conditionally stable
explicit Euler scheme and the unconditionally stable backward Euler scheme, can be
used in the Galerkin formulation which reads

1 dn= / wun(X(-,tn+1;tn}) rfH +
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The choice 9 — 0 corresponds to the explicit method, and 0=1 corresponds to the
implicit one.

Two critical issues arise in the implementation of the Lagrange-Galerkin method.
First, the numerical approximation of the first term on the r.h.s. of the previous
equation can give rise to instability phenomena due to errors introduced by the
numerical quadrature. Second, at each integration point, £, the interpolation of
un(X(£, tn+1;tn}) must be evaluated and this may not be a trivial task. Note that,
when the mapping*- -» X(£. tn+1 ; tn) is used, the new position X(£, tn+1- tn) may
fall in a different element. See also the interesting discussion by Bermejo (1995) and
Allievi and Bermejo (2000)

Characteristic variational formulation: The fact that the solution of convection
problems remains constant along fluid particle paths can also be exploited in a closer
connection with a weak variational formulation, as exemplified by the characteristic-
based finite element method proposed by Benque et al. (1980; 1982).

In this method, the convection equation (3.4a) is first recast into weak form by
multiplying it by a suitable test function ^(x, t) in space-time and then integrating
over the space-time domain Qn := fix]tn. tn+l [. This produces the weak form

ipsdttdt.

After integration by parts in both space and time, and assuming that the function
ip(x.t) vanishes on the spatial boundary, the previous integral equation becomes

f
JSl

(3.17)

where we have assumed that the convection velocity a is divergence free.
In order to simplify the integral on the r.h.s. of (3.17) the arbitrary test function

t(x,t) is required to satisfy the homogeneous initial boundary value problem

0 onQn, (3.18a)

ip(x,t)=0 onT, (3.18b)

i/>(x,tn+1) = w(x), (3.18c)

where w(x) is the standard weighting function associated with the considered finite
element approximation over the domain fi.

Under these circumstances, the weak form (3. 17) can be rewritten as

[ wun+ld$l= I \l>nundtl + ft ijisdSldt,
JQ Jn J JQn

where the unknown un+1 appears explicitly on the l.h.s. Note that the finite element
discretization of this equation yields a linear system of algebraic equations governed
by a symmetric positive definite matrix in the form of a consistent mass matrix.
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However, this simplicity is only apparent. The function i{>(x,t) must be known
at tn and where needed for the evaluation of the last integral on the r.h.s. of the
previous equation. The difficulty now lies in the resolution of the problem (3.18). The
homogeneous pure convection equation (3.18a) can be solved using the characteristics
as shown in Section 3.3.2. In fact, the function tp(x,t) remains constant along the
characteristics because the source term is zero, see (3.9) and (3.10). Thus,

^(x,t)=w(X(x,tn+1;t}) w i th t e [tn,tn+l].

Two issues are relevant for this method: the evaluation of the characteristics and
the computational burden due to the interpolation of w(X(x, tn+1;t)). Note that
this was also the case in the previous method based on a direct integration along the
characteristics.

The method is nonetheless very accurate as confirmed by Morton (1996, p. 329)
who demonstrates that "on a uniform mesh in one dimension and for linear constant
coefficient advection, the Lagrange-Galerkin method based on continuous piecewise
linear basis functions is equivalent to a semi-Lagrangian method using cubic spline
interpolation".

In addition to the original works previously mentioned, the idea of using a La-
grangian (or characteristic-based) approach to integrate the convective terms in trans-
port equations has been exploited by many researchers. In particular, mention should
be made of the characteristic Galerkin method introduced by Morton (1982; 1983;
1985), which, with linear elements, possesses accuracy properties similar to the semi-
Lagrangian method with cubic interpolation. Also noteworthy is the least-squares
characteristic method due to Li (1990). The starting consideration for this method is
that the solution obtained by convection of the initial data along the characteristics
does not belong to the interpolation space spanned by the shape functions of the base
finite element mesh. To cure this situation, the idea of Li (1990) was to employ the
least-squares approach to minimize the difference between the rigidly translated so-
lution and the desired one expressed in terms of shape functions referred to the base
element mesh.

As we have seen, finite element methods directly exploiting the characteristics
present technical difficulties in their practical implementation. For this reason, instead
of discretizing convection problems along the particle trajectories in a Lagrangian
fashion, we prefer to discretize them along the Cartesian coordinates, a choice which
in our view simplifies the numerical developments. The fact nevertheless remains
that time discretization schemes for convection problems should be able to mimic
the role of the characteristics, or, in other words, to take into account the directional
character of propagation of the information.

3.4

As seen in Chapter 2, achieving a stable and accurate spatial representation is the
main objective in the finite element solution of steady transport problems. This is
not the only issue in time-dependent problems. In fact, the spatial representation
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provided by finite elements needs to be accurately transported in time to trace the
transient response. This implies that one must select an appropriate algorithm for
numerical time integration. A proper balance between the spatial and the temporal
approximations must be considered. In other words, phase accuracy now becomes
an important consideration in addition to spatial stability.

A usual practice in the finite analysis of time-dependent problems consists of dis-
cretizing first with respect to the spatial variables, thus obtaining a system of coupled
first-order ordinary differential equations (with respect to time), a procedure called
semi-discrete method. Then, to complete the discretization of the PDE, it remains
to integrate the first-order differential system forward in time to trace the temporal
evolution of the solution starting from the initial data u0 (x). The complete apparatus
of numerical methods for ordinary differential equations can be used; this procedure
is called in the numerical analysis literature the method of lines. Which discretization
is performed first is not an issue for linear spatial operators with constant coefficients
and a Galerkin formulation. However, for future cases (nonlinear problems, stabiliza-
tion techniques for transient analysis, etc.) it is preferable that the time discretization
be performed before the spatial discretization.

In this section we recall some of the most usual algorithms for solving first-order
differential equations. Their accuracy and stability properties when used in conjunc-
tion with linear finite elements are presented in Section 3.5.

3.4.1 Time discretization

3.4.1.1 The 0 family Of methods This family is widely used for integrating
first-order differential equations. It is a single step method, that is the value u n+1 of
the problem unknown at time tn+1 = tn + AHs determined from the value un at
time tn. In this case, this is done by a weighted average of wj1 and w"+1 at the end
points of the integration step:

The time step A£ is assumed constant for the time being and 6 is a parameter taken
to be in the interval [0, 1]. Note that ut will be replaced using equation (3.4a).

Several well-known methods are obtained for different values of the 9 parameter.
For values of 9 < 1/2 the schemes are conditionally stable. The Euler method, that
is 9 — 0, is the best known. For values of 9 > 1/2 the methods are unconditionally
stable. Backward Euler, 9 = 1, Galerkin, 9 = 2/3, and Crank-Nicolson, 9 = 1/2,
are the most usual ones. As the truncation error in the previous equation indicates,
the only method with second-order accuracy is Crank-Nicolson (see the details in
Ames, 1992; Mitchell and Griffiths, 1980; Wait and Mitchell, 1985; Johnson, 1987;
Lambert, 1991). The stability properties of these methods are studied in Section 3.5.

In practice, it is usual and sometimes preferable to solve for the incremental un-
known Aw = un+1 — un rather than for un+1 :

A 11
— -0Au, = <, (3.19)



CLASSICAL TIME AND SPACE DISCRETIZATION TECHNIQUES 93

where AM* = uf+1 - uf, un is the approximation of u(tn), tn = t° + n£\t (t° is
the initial time), and ut is again replaced using the original PDE (3.4a). This results
in the following semi-discrete equation:

/\ii
— + 6>(a • V)Au = 9sn+1 + (1 - 9}sn - a - Vun. (3.20)

3.4. 1.2 The Lax-Wendroff method In addition to Crank-Nicolson, second-
order accurate, explicit, time-stepping algorithms are also widely used. The Lax-
Wendroff method, which is based upon a truncated Taylor series expansion, is one of
the most popular. In the Taylor series expansion

u(tn+1} = u(tn] + Atut(t
n) + ^A

&

the first and second time derivatives are substituted by spatial derivatives using the
governing equation (3.4a). Thus, the following relationships are used:

uf = sn-o,'Vun,

u?t = sf-a- V< = s? - a - Vsn + (a • V)2un
:

and the second-order explicit method is obtained from the truncation of the previous
Taylor series expansion, that is (un+l — un)/At — uf + Aiu^/2. The resulting
time-stepping algorithm reads

+ a-V2un + sn + ~s?-a'Vsn. (3.21)

One of the main distinguishing features of the Lax-Wendroff method is that, despite
its appearance, the second term on the r.h.s. of (3.21) is not to be thought of as an added
artificial diffusion term. In fact, as far as time-dependent solutions are concerned,
the second-order spatial derivatives are simply a consequence of the second-order
accurate temporal approximation. The tensorial structure of these terms indicates
that the correction introduced by the second time derivative acts only in the direction
of the streamlines, in complete analogy with the SUPG method discussed in Chapter
2.

3.4.1.3 The leap-frog method Another widely used explicit time-stepping
method is the three-level leap-frog method

u(tn+l) = u(tn-1)

which is second-order accurate in the time step Af because the rate of change u " is
evaluated at the mid-point between the time stations tn– l and tn+1. When applied
to the convection equation (3.4a) the leap-frog method reads

. —t ,- «- , ^, . ( j . Z Z )
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3.4.2 Galerkin spatial discretization

3.4.2.1 The integral equation First, the standard Galerkin method of weighted
residuals will be employed for the spatial discretization of the convection problem
(3.4). This can be done directly on the differential equation (3.4a), or as previously
indicated, on the time discretized equations (3.19X (3.21) or (3.22). For completeness,
we present the semi-discrete scheme first. By means of the weighted residuals method
applied directly to (3.4a) the following integral equation is obtained:

= / w s d f t , (3.23)

where, as in previous chapters, the test functions w belong to the space V and satisfy
the homogeneous boundary conditions on F ™:

Note that the functions in V do not depend on time. By contrast, the solution u of
(3.4) lies in £2(0, T; /H1(fi)). In fact, the time dependence of u can be translated to
the trial space St, which varies as a function of time,

St := {u\ u ( - , t ) e - H l ( f t } , t £ [0, T] and u(x,t) = uDforx 6 F£} .

Dirichlet boundary conditions are taken into account by the definition of trial space.
But, to account for the Neumann boundary conditions, the convective term, the second
term on the l.h.s. of (3.23), is integrated by parts. Then, the variational problem
associated with the initial boundary value problem defined in (3.4) becomes: for any
t e [0, T] find u € St such that for all weighting functions u,' e V

{ (w.ut) — (Vw.au) + (u?.w(a-n)) rou( = (w,h)r,n + (w.s),

(w.u(x,0)) = (w.u0(x)).

where the standard notation presented in Section 1.5 is used for the £ 2 scalar product,
and h is the prescribed normal flux on F $. Note that the surface integral on the l.h.s.
is limited to Tout because w = 0 on Fin.

Remark 3.5 (Only Dirichlet boundary conditions). If no Neumann condi-
tions are prescribed on the inflow portion of the boundary the variational form
presented in (3.23) can be used directly. Then, given the source term s, the
Dirichlet boundary condition UD and the initial condition UQ, one has to find
u(x, t) e St and t 6 ]0, T[ such that for all w € V,

{ (w.ut) + c(a;w.u) = (w.s),

(ly.u(x.0)) = (w.uo(x)),

where the trilinear form, already introduced in (2.6), is employed, namely

:(a;w.u] — I w(a,
Jn
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3.4.2.2 Galerkin formulation of the semi-discrete scheme The spatial
discretization of the unsteady transport equation by means of the Galerkin formulation
consists of defining two finite dimensional spaces Sh and Vh as subsets of S and V,

Vh := {wenl(ty Hn« €P p ( fJ e )Ve andw-

Sf := {u\u(-,t) GftH^X-,*)!^ £ P P ( f t e ) t £ [0,T] Ve andw = UD onTD}

where Pp is the finite element interpolating space consisting of polynomials of order
p. The semi-discrete Galerkin formulation is obtained by restricting forms (3.24) to
the above finite dimensional spaces, namely, for any t € [0,T] find uh £ <S/* such
that for all wh e Vfc,

auh) + (wh,uh(a-n))Tout = (w f t,/i) r t^ + (wV),

= (w h ,u 0(x)) .

Once the Galerkin forms are defined, we follow the same rationale as already
discussed in Section 2.2. Note, however, that now the time dependence of the solution,
uh(x, t), is taken into account in the following manner: the shape functions NA(x)
do not depend on time and the time dependence is accounted for by the nodal values
of the unknown. Thus, (2.10) becomes

uh(x,t)= NA(x}uA(t) + NA(x)uD(xA,t),

where, as before, rj is the set of global node numbers in the finite element mesh and
r?D C r? the subset of nodes belonging to the Dirichlet portion of the boundary, F gf .
The test functions are defined as before, see (2.1 1), w h € Vh = spanBe<n^r)D {NB}.

Finally, the usual assembly process delivers the semi-discrete system

Mu - (Cr - Bout)u = f , (3.25)

which governs the transient response of the convection problem. Note that vectors
u and u contain, respectively, the nodal values of the unknown u and of its time
derivative, while M and C are, respectively, the consistent mass matrix and the
convection matrix. Matrix Bout is related to the outflow boundary, Tout. These
matrices are obtained by topological assembly of element contributions as follows:

M = AeMe Me
ab= f NaNbdto

Jn*

C - A6Ce Ce
ab = f Na(a- VNb}dtt (3.26)

Jw

ow*]e [Bout]e
ab = f NaNb(a - n)

./<9Oenro«'

where A denotes the assembly operator, and 1 < a, 6 < nen. The r.h.s. vector,
f , considers the contribution of the source term, s, the prescribed flux, h, and the
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Dirichlet data UD- It results from the assembly of nodal contributions of the form
f = AV and

6=1

where nen is the number of element nodes, and ue
Db(t) = UD(xb,t) if UD is prescribed

at node number b and equals zero otherwise.

Remark 3.6. It is worth noting that a particularly high spatial accuracy is ob-
tained by the Galerkin approach when a uniform mesh of linear finite elements
is employed to discretize a pure convection problem. In this simple case,

Ut + aux = 0 (3.27)

produces the following semi-discrete equation at an interior node j:

u + Oi - 2ii + i i + i ) + a U j+1~Uj"1 = 0,

where h is the size of the elements. It is easy to show, by means of Taylor
series developments, that the previous scheme is fourth-order accurate. This
is indeed a significant gain with respect to the second-order accuracy obtained
with the central difference method. Such a gain is due to the presence of the
consistent mass matrix; note the second term on the l.h.s. in addition to the term
\ij present in the central finite difference method. However, this high accuracy
is lost on a non-uniform mesh or when data are not smooth enough (recall that
the proof requires Taylor series developments).

Note also that the differential system (3.25) must be integrated in time to
produce the transient response of the convection problem. It is easily conceived
that the fourth-order spatial accuracy would be quickly eroded if the numerical
time integration procedure were not of comparable accuracy. The issue of
an adequate coupling between space and time discretizations is particularly
important in convection problems due to the role of the characteristics in their
solution.

3.4.2.3 Galerkin formulation of the 0 family methods As previously noted,
which discretization is performed first is not an issue for linear spatial operators with
constant coefficients and a Galerkin formulation. However, for future cases (nonlin-
ear problems, stabilization techniques for transient analysis, etc.) it is preferable that
time discretization precedes the spatial one. The time discretized equations, (3.19),
(3.21) and (3.22), do have a truncation error. However, if the temporal truncation
error is neglected, these equations can be interpreted as a spatial differential operator
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applied to w, or in some cases to the unknown increment Aw. In fact, they represent
a strong form that must be solved at each time step. Under this rationale it is easy to
determine from (3.19) the variational form associated with the 9 family methods:

~ 0 (w, Aut) = (w, <) .

When ut is replaced using the original PDE, (3.4a), or if a weighted residual for-
mulation is applied to (3.20), we obtain an equation for the unknown Aw at each
time-step:

(w, — J - 8(Vw, a Aw) + 0((a • n)w, Au)Tout

= (Vw,awn) - ((a-n)w,un)rout

+ (w,ehn+1 +(l- 0)hn)Tij + (w,esn+1 + (1 - 0)sn). (3.28)

Note that in the previous equation the unknown Aw appears in the same three
terms as in the l.h.s. of (3.24). Thus, after spatial discretization, the unknown Aw
will be governed by the same mass matrix, convection matrix and outflow boundary
matrix as presented in (3.25) and (3.26), but scaled by I/ At and 9, respectively. The
r.h.s. terms include also the influence of the inflow Neumann boundary condition, h,
and the source term, s. These terms are linearly interpolated, using 0, between time
tn and tn+1. Moreover, since the unknown is the increment, Aw = wn+1 — wn, the
r.h.s. also includes the convection part at tn.

It is important to note that in equation (3.28) time is already discretized. Therefore,
its solutions are approximations of order 1 or 2 depending on the value of 9. Moreover,
as previously noted, the test functions belong to the space V presented earlier (no
variation with time) and the unknown Aw belongs to a solution space St which varies
as a function of time:

St := {Aw | Aw(-,t) eH1^), t€ [0, T] and Au(x,t) is given for z eT^}.

3.4.2.4 Galerkin formulation of the Lax-Wendroff method Similar vari-
ational forms can be derived for other time-stepping schemes. From (3.21), which
characterizes the Lax-Wendroff method, the following variational form is obtained:

After integration by parts, this equation becomes
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where the following expression has been used for the prescribed normal flux:

)U
n] (a • n)

because it introduces a truncation error of the same order as the time-stepping scheme.
Note that, as expected, this one step Lax-Wendroff method requires, at each time
step, the resolution of an algebraic system. This system has a constant matrix, the
consistent mass matrix. Note also that some authors call this method second-order
Taylor-Galerkin. Thus, we shall refer to this scheme as TG2.

3.4.2.5 Galerkin formulation of the leap-frog method This method in-
duces a variational equation obtained from (3.22) in the form

n+1 tl~1 (3-3o)

which, after integration by parts of the convective term, becomes

n+l

In this case, as for the previous method, the matrix governing the system of discrete
equations is the consistent mass matrix.

3.5 STABILITY AND ACCURACY ANALYSIS

A fundamental result, which is classical in the finite difference literature, is the Lax
equivalence theorem (see Richtmyer and Morton, 1967). It relates the concepts of
convergence and consistency to the concept of stability of a numerical scheme. Sec-
tion 1 .5.5. 1 in Chapter 1 already introduces consistency, see ( 1 .34), and convergence,
see (1.35), in the context of elliptic problems. They can be extended to initial value
problems, see Quarteroni and Valli (1994, Sec. 14.3) for a detailed presentation.
More precisely, the Lax equivalence theorem states that for a well-posed linear ini-
tial value problem, a consistent scheme is convergent if and only if it is stable. In
order to comprehend this theorem some basic concepts such as well-posed or stable
problem shall be introduced. A problem is considered well-posed when its solution
depends continuously on its initial value and is uniformly bounded in any compact
interval. For linear problems such as the ones considered here this concept can be
formalized as follows: for a homogeneous problem (source term equal to zero) with
homogeneous boundary conditions for every T > 0 there exists 0 < C(T) < oc
such that ||u(x, OH < C(T) uniformly for all t e [0, T] (the constant C depends on
the initial condition ||w(x, 0)||). For instance, the convection problem described by
(3.4) with constant coefficients is well-posed because the norm of the solution is con-
stant in time. The transient convection-diffusion-reaction problem (i.e., the transient
counterpart of (2.54) that will be studied in Chapter 5) is also well-posed because
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diffusion will induce a decay in the norm of the solution. Thus the Lax equivalence
theorem ensures that, for the complete analysis of the numerical scheme, it suffices to
study its stability. Consequently, we concentrate our efforts on the stability analysis.

Stability of numerical schemes for PDEs is not a trivial issue. Here we will not
study stability in detail. There are excellent references that study stability in a more
formal manner for pure convection or convection-diffusion-reaction problems. The
classical one is by Richtmyer and Morton (1967). Mitchell and Griffiths (1980)
present a more accessible textbook for finite differences and the monograph by Quar-
teroni and Valli (1994), which is more finite element oriented, is also worth reading;
other textbooks can also be very helpful, see for instance Hughes (2000) or Morton
(1996). Different techniques (energy methods, eigenvalue techniques) can be em-
ployed to perform a stability analysis, but here we will use the Fourier method. One
of the advantages of using such a technique is that apart from stability another crucial
issue is studied: accuracy. In fact, at the end of this section, the modified equation
method of Warming and Hyett (1974) is also introduced to investigate the accuracy
properties of the various time integration schemes.

3.5.1 Analysis of stability by Fourier techniques

The classical Fourier analysis, also called Von Neumann stability analysis (see for
instance Ames, 1992; Mitchell and Griffiths, 1980; Wait and Mitchell, 1985), con-
siders a homogeneous linear differential equation with constant coefficients, namely
equation (3.4a) with s = 0. But it is important to note that such a technique is de-
signed to analyze Cauchyproblems. That is, in a ID situation, problems defined over
the whole real axis (—oo < x < oo), and thus with no boundary conditions (there is,
however, the requirement that the solution is square integrable). Hence, it is applied
automatically to problems with periodic boundary conditions and it can also be ex-
tended to problems with Dirichlet conditions over finite domains for the PDEs studied
here. Perhaps more important is the necessity that for each point the fully discretized
equation should be identical, thus restricting treatment to uniform discretizations. In
fact, we are actually going to deal with linear elements and the fully discrete equation
at one interior node; this is standard procedure in finite differences where the stability
literature is vast and accessible to practitioners.

Instead of restricting ourselves to the pure convection problem, we present this
technique for the homogeneous transient convection-diffusion-reaction equation with
constant coefficients, namely

ut + a • Vw - V -(vVu) + au - 0. (3.31)

Furthermore, we assume that the Fourier series for the initial condition, u(x. 0), is
absolutely convergent (see Richtmyer and Morton, 1967, Chap. 4). This equation is
studied in detail in Chapter 5.

The linearity of the problem is crucial. The evolution of the initial condition
is the sum of the evolutions for each single mode in which the initial condition is
decomposed. The analytical solution of (3.31) for one Fourier mode in n sd spatial
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Table 3.1 Spatial, discrete and mode transformation operators for ID.

Spatial operator Discrete Mode transf. Expression

(A

At(Ni

-A^C

A«(o-

-At2 (a • i

ri.,Nj)/h2

,a-VNj)/h2

VNi,VNj)/h2

VNi,Nj)/h2

VNi,a-VNj)/tf

"1 -i— —A j \«^ 1^1

1 /*^ JT \ ( f /~^\
2^ 0 «^(.S5 ̂  J

d<5 /C(^.)

— •zC 8 — -4(£. C7)
! /-r2 r2 ^)/t /-»\O O Z x ( c » v_v 1

l-(2/3)sin2(^/2)

i C sin £

-4dsin2(£/2)

— i C sin£

-4C2sin2^/2)

dimensions reads

u(x,t}= JJ (,-(»**+")* eikj(*i-ajt) (3.32)
j=l,...,nsd

where a_, is the j component of the convective velocity a = (a i . a2, - . . , Onsd)
T and

kj is the j component of the wave vector k = (k\ . k-z . . . . . fcnsd )
T, which defines the

generalized Fourier component

The exact amplification factor, Gn, which relates the value of the unknown u at
two consecutive instants tn and tn+1 and at each point in fi, is then determined:

un+l = GeKun, <7ex = e-
(S"+i^)Ai (3.33)

where Je* = v k • k + a and cjex = a • k.
To determine the numerical amplification factor for a given time-stepping scheme,

taking into account the spatial discretization, it is necessary to determine the influence
of each spatial operator on a Fourier mode. Thus discrete operators associated with
any of the weak continuous spatial operators defined in Section 3.4.2 must be deter-
mined. In Table 3.1 the relations between spatial operators, finite difference discrete
operators and the mode transformations are shown. This table is particularized for
uniform linear ID elements of size h and consequently it requires the well-known
difference operators (see Wait and Mitchell, 1985):

o Second-order centered first difference

8u(x, t) = u(x + h.t) — u(x — h.t).

o Second-order centered second difference

62u(x, t) = u(x -h.t)- 2u(x, t) + u(x + h, t).

To determine the influence of the numerical scheme on a Fourier component one
introduces the dimensionless wave vector ("number" in the 1D case), £ = h k. More-
over, using A£ and h the parameters in the differential equation, (3.31). are scaled. The



STABILITY AND ACCURACY ANALYSIS 101

Courant number is C — ||c|| withe = a At/h, the diffusion number is d—
and the dimensionless reaction is r = aA£. The exact amplification factor, (3.33), is
rewritten as

Gex(£,c,d,r) = e-<*«+iw«>At - e-(d«-€+r+ic.o_ (3 34)

As noted previously we will restrict ourselves to 1D. Thus, the exact amplification fac-
tor (3.34) will be compared with the numerical one obtained for a particular numerical
scheme at an arbitrary interior node j,

u™+1 = G(^,C,d,r) u1], G(£,C,d,r] = e-<*+iw)A*. (3.35)

Here, un(x) denotes the piecewise linear finite element solution obtained at time
tn = n Ai on a uniform mesh and the corresponding nodal values are denoted u " =
un(jh}.

Then, if the method is stable, the amplification factor G must verify

\G(t,C,d,r)\<l

for all values of the dimensionless wave number £ e [0. TT] (note that £ = -K corre-
sponds to two elements per wavelength) and the dimensionless numbers C, d and
r. Moreover, the accuracy of the numerical scheme can be assessed by comparing
numerical and exact damping and phase values. These relative errors are defined
respectively as

,d,r)| u arg(G(£,C7,d,r))
- • l' ;

From the point of view of accuracy only the range 0 < £ < ?r/4 is of interest because
£ = 7T/4 corresponds to eight elements per wavelength.

3.5.2 Analysis of classical time-stepping schemes

We shall now apply the Fourier technique to investigate the stability and accuracy
properties of the previously presented time-stepping techniques combined with the
Galerkin finite element formulation, see Section 3.4.2, in pure convection. Un-
fortunately, disadvantages of the standard Galerkin finite element method will be-
come apparent when it is combined with the classical time-stepping schemes de-
scribed in Section 3.4 (see also Morton and Parrott, 1980; Donea, Quartapelle and
Selmin, 1987; Donea and Quartapelle, 1992; Morton, 1996). In particular, we shall
see that second-order time schemes do not properly combine with linear finite ele-
ments in convection problems, because large values of the time step imply large phase
errors.

The 0 family of methods, the Lax-Wendroff method and the leap-frog method are
considered for time discretization. The discrete equation obtained at an interior node
j with the 9 family method is determined from (3.28) (recall that there is no source
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term, s = 0, and we consider an interior node). The fully discrete equation can be
written from Table 3.1 as

which allows us to find the equation that modifies each Fourier component using also
Table 3.1,

Thus the numerical amplification factor is

7) 1 - | sin2 | - i(l - 9)C sin£

7) l-|sin2|

The stability can now be studied for each value of 9 verifying the condition \G e\ < 1 •
In particular for 9 = 1/2, that is Crank-Nicolson, one can verify that the amplification
factor is always (for 0 < f < TT and C > 0) equal to one. Thus, Crank-Nicolson is
unconditionally stable and non dissipative (with a Galerkin formulation). Moreover,
the accuracy of this method can be evaluated by means of (3.36).

A similar analysis can be performed for the Lax-Wendroff method departing
from (3.29) (with no source term and at an interior node). The equation that modifies
each Fourier component is in this case

and the amplification factor is

) _ l - ( f + 2C 2 )s in 2 f - iCsin£
~ ^ o . o < rl-|sm2 |

which induces the condition of numerical stability: C2 < 1/3.
Finally, from (3.30) the analysis of the leap-frog method can be performed,

namely
M (0 u?+l = Af (0 u?-1 - A& C} u?,

where the amplification factor is determined by solving a quadratic equation (hint:

, C)

-i C sin£ ± y(\- | s in2f)-C2 sin2 f

Genuine finite element schemes are based on a so-called consistent mass repre-
sentation in which the mass matrix is defined as in (3.26). Another option consists of
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dimensionless wave number dimensionless wave number

Fig. 3.3 Relative phase error in pure convection of the Lax-Wendroff method combined
with linear finite elements using a consistent (left) and a diagonal (right) mass representation.

using a diagonal mass matrix. In this case, the discrete equations obtained in 1D on
a uniform mesh of linear elements are identical to those obtained with second-order
central differences. The finite element scheme corresponding to (3.29) with a diag-
onal mass representation instead of the consistent mass matrix yields the following
scheme for an interior node:

1

This scheme corresponds to the central finite difference Lax-Wendroff discretization
(LW-FD). Its amplification factor is

GLW-FD = 1 - 2C2 sin21 - i C sin f.
ZA

It is stable up to C2 = 1 and possesses the so-called unit CFL property; that is, the
exact nodal solution is obtained on a uniform mesh when C2 = 1. Recall that CFL
stands for the initials of Courant, Friedrichs and Lewy authors of the celebrated paper
originally published in 1928 and reprinted in english in 1967. Note that the finite
difference method is far more economical from a computational point of view than its
finite element analogue (a diagonal instead of a consistent matrix is employed) and it
also has a larger domain of stability. In order to further compare the Lax-Wendroff
finite element scheme (TG2) and its finite difference analogue the relative phase errors
are depicted in Figure 3.3.

One notes that for small values of the time step At, that is small Courant numbers,
the consistent finite element scheme has a higher-order phase accuracy than the finite
element scheme using a diagonal mass representation. This is because semi-discrete
(time continuous) consistent finite element schemes are fourth-order accurate on a
uniform mesh, while methods based on a diagonal mass matrix only produce a second-
order accurate spatial discretization. At intermediate and short wavelengths the phase
error of the TG2 scheme becomes positive as the time step is increased and deteriorates
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dimensionless wave number dimensionless wave number

Fig. 3.4 Relative phase error in pure convection of the Crank—Nicolson method combined
with linear finite elements using a consistent (left) and a diagonal (right) mass representation.

dimensionless wave number dimenstooless wave number

Fig. 3.5 Relative phase error in pure convection of the leap-frog method combined with
linear finite elements using a consistent (left) and a diagonal (right) mass representation.

seriously as the stability limit C2 —> | is approached. By contrast, the scheme with
diagonal mass matrix has a predominantly lagging phase error, except for large wave
numbers when C > |. Here, the phase error is seen to decrease as the Courant
number approaches the stability limit C = 1.

A similar analysis can be performed for the Crank–Nicolson and leap-frog meth-
ods. The relative phase errors of the Crank-Nicolson and leap-frog schemes combined
with linear finite elements using either a consistent or a diagonal mass representation
are reported in Figures 3.4 and 3.5, respectively. One notes that the phase response of
the consistent finite element schemes deteriorates as the Courant number increases,
while the phase accuracy in the case of a lumped-mass matrix improves as C ap-
proaches the stability limit of the explicit scheme. Furthermore, in the case of the
leap-frog method, the combination with finite elements using a consistent mass ma-
trix leads to a reduced stability range, namely C2 < 1/3, while the scheme based on
a diagonal mass representation is stable up to C2 < 1.
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In summary, the superior phase accuracy of the finite element schemes based on a
consistent mass matrix, which is due to their fourth-order spatial accuracy on a uniform
mesh, cannot be exploited as the time step is increased. Moreover, the stability interval
in explicit methods is reduced when compared with the corresponding lumped-mass
(or central difference) methods. These facts will be confirmed in the next section by
an analysis based on the modified equation method.

Further evidence of the difficulties in coupling linear finite elements and second-
order time-stepping algorithms is provided in Section 3.11 with the solved exercises.
Here we have considered the pure convection equation, namely the first-order wave
equation. Christen (1991) presents a complete analysis of the influence of the mass
matrix on the dispersive nature of the semi-discrete second-order wave equation.

3.5.3 The modified equation method

Numerical methods for PDEs inevitably introduce truncation errors. Thus, numerical
schemes do not solve the original PDE, but instead what Warming and Hyett (1974)
call a modified equation. The modified equation is the PDE which is actually solved,
apart from round-off errors, when a given numerical scheme is applied to solve an
initial value problem. For example, the numerical solution of the linear convection
equation in ID, see (3.27), induces a modified equation of the generic form

du du
(3-37)

p=l

where fip = (J,p(h, A£), and h is the element size.
The two summation terms that appear in the modified equation and do not belong

to the original equation represent the trancation error of the numerical scheme. These
terms provide immediate information on the dissipation and dispersion properties of
the numerical scheme. In fact, even and odd derivatives are associated, respectively,
with amplitude and phase errors. Moreover, the correct sign of the coefficient of the
lowest-order even-derivative term in the modified equation is, in pure convection, a
necessary, but not always sufficient, condition for numerical stability.

The procedure to determine the modified equation requires some tedious algebra
and goes as follows:

1 . The difference equation resulting from time and space discretization of the
governing equation is first expanded in a double Taylor series in time and space
around the space-time point jh, nAi.

2. This produces a PDE including an infinite number of terms and also spatial,
temporal and mixed derivatives of every order.

3. One then eliminates the temporal derivatives of order higher than one, as well
as the mixed derivatives in favor of purely spatial derivatives using the PDE
obtained in step 2. This produces the modified equation in the form indicated
by equation (3.37).
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Table 3.2 Modified equation in pure convection for second-order Lax-Wendroff, leap-frog
and Crank—Nicolson schemes combined with linear finite elements.

TG2 + Linear elements

Ut + aux =
u , ah4 ( -i 15

~

Leap-frog + Linear elements

Ut + aux =
ah2 r<1 93u , ah* fey~

Crank-Nicolson -f- Linear elements

it* + aux =
a/i2 /^2 93u , a/i4 / x _ Q/^4 \ d5u ,
12 ° 9^ "*" 720 V^ yc/ ^075" ^

The modified equations associated with the classical second-order schemes pre-
sented so far for the ID convection equation will now be presented. They offer an
alternative approach to the Fourier techniques to investigate the accuracy properties of
the discrete convection schemes. The modified equations associated with the various
second-order time schemes are obtained in the form indicated in Table 3.2. They are
derived assuming uniform linear elements and a Galerkin spatial discretization.

Note that fourth-order spatial accuracy of finite element schemes is clearly apparent
from the modified equations (the mesh size h does not affect the coefficient of the third-
derivative terms, which only depends on the square of the time step: h 2C2 = a2 A£2).
These schemes exhibit a dominating phase error controlled by third-derivative terms
which is due to the time discretization only. Unfortunately, the dominating phase error
increases with the square of the time step. This implies a rapid accuracy fall-off as
the time step is increased. Furthermore, the stability range of these explicit schemes
(TG2 and LF) is drastically reduced compared with the corresponding lumped-mass
finite element (or central difference) schemes, usually by a factor \/3. See in Table
3.2 the coefficient of d*u/dx* in the modified equation for the Lax-Wendroff method
(recall that this coefficient must be negative for stability).

By contrast, the modified equations in Table 3.3 show that when finite elements
with a diagonal mass representation (or second-order central differences) are used for
space discretization, the phase error of explicit schemes decreases as the Courant num-
ber increases. Note, however, that the implicit Crank-Nicolson method exhibits the
same drawback as its consistent-mass counterpart. The phase error in both schemes
increases with the square of the time-step size.

The behavior of second-order time schemes in the finite element solution of con-
vection problems is further illustrated by the solved exercises in Section 3.11. There,
they are compared with the higher-order time-stepping methods described in the next
sections.
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Table 3,3 Modified equation in pure convection for second-order Lax-Wendroff, leap-frog
and Crank—Nicolson schemes combined with second-order central differences or lumped-mass
linear finite elements.

Lax-Wendroff + Finite differences

ut + aux =
a/i2 f-t r^"2\ d3u ah3 s~if-\ /^2\94u af t 4 / - ! . c/^»2 «/°'4\c?5w

Leap-frog + Finite differences

Ut + aux —

(l - IOC2 + 9C4)0

Crank-Nicolson + Finite differences

Ut + aux =
3u ah4 n , r/02 , 3^4\ d5u

-
ah2 ft , I /-V2N d3u
g-U + 2^ J^¥ -

3.6 TAYLOR—GALERKIN METHODS

3.6.1 The need for higher-order time schemes

We have underlined in Section 3.5 the difficulties in coupling second-order time
schemes with linear finite elements in convection problems. These difficulties can be
overcome by extending the time accuracy beyond second order.

To highlight the need for accurate time-stepping methods in the finite element
solution of time-dependent convection problems we will restrict ourselves to the
homogeneous, s = 0, ID case, see equation (3.5).

Section 3.3 showed that the solution of this equation remains constant along the
characteristic lines dx/dt = a, see equation (3.6). Therefore, provided the solution is
regular enough, the value of the unknown u at two consecutive time levels t n = n At
and tn+l = tn + At satisfies

u(x,tn+1) =u(x-aAt,tn]

- u(x tn} - aAt —(x tn} +-u(x,t ) a^t(x,t)+

(
rj \

-aAtT— j u(x.tn).
dxj

Moreover, for an infinitely differentiable function a Taylor series of u(x. t n+1 ) indi-
cates that

(
o \

At— \u(x,tn). (3.39)
ot J

Relations (3.38) and (3.39) highlight a key aspect of the numerical approximation of
convection problems: space and time are linked by the characteristics and the dis-
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cretization of one certainly influences the other. Good methods are thus needed for
both numerical time integration and spatial representation; that is, the exponential
function in (3.39) and the spatial operator in (3.38) must be properly approximated.
The fact is that second-order time schemes do not allow a sufficiently accurate ap-
proximation of the exponential operator in (3.39), or, stated in other words, they do
not properly account for the directional character of propagation of information in
hyperbolic problems. Higher-order time-stepping schemes provide a better approxi-
mation to the exponential function in (3.39), and consequently allow a better account
of the propagation of information along the characteristics. Higher-order implicit
time-stepping methods are discussed in Chapter 5 where the finite element solution
of transient convection—diffusion problems is addressed. In the present chapter de-
voted to pure convection problems, we shall present higher-order explicit methods
known as Taylor—Galerkin (TG) methods (Donea, 1984; Donea et al., 1987; Donea
and Quartapelle, 1992). Such methods represent an attempt to simulate, by a Taylor
series in time extended to third or fourth order, the concept that in convective transport
the solution remains constant along the characteristics.

3.6.2 Third-order explicit Taylor-Galerkin method

3.6.2. 1 Time discretization Explicit Taylor-Galerkin methods represent a gen-
eralization of the Lax-Wendroff method discussed in Section 3.4.1 .2. They are based
on a Taylor series expansion up to the desired order. Thus, the solution u must be
sufficiently smooth. In order to obtain a third-order method the Taylor series is taken
as

= ut(t
n] + -^tutt(t

n] + t*uttt(t
n) + 0(A*3). (3.40)

Then, time derivatives of u (ut, utt, . . . ) are replaced using the original differential
equation, (3.4a) in our case. For pure convection equations the order of the time
derivatives does correspond with that of the space derivatives. In this case, in order
to substitute the time derivatives in (3.40), they are expressed as

ut = s - a-Vu, (3.41a)

utt = st - a • Vut - st - a • Vs + (a • V)2u. (3.41b)

uttt = stt - a- Vs< + (a- V)2ut. (3.41c)

Note, however, that in (3.41c) ut has not been substituted by (3.41a). This is done on
purpose to have at most second spatial derivatives and preserve the use of standard
C°-continuous finite element approximations. In practice, ut in (3.41c) is substituted
by (un+l - un)/At, and the third-order approximation of the Taylor series (3.40)
becomes

(a . v)2l u

^ M

~(sf-a-Vsn) + (s^-a'Vsf). (3.42)
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This time-stepping scheme only involves first and second time derivatives and is the
basis of the one-step, third-order accurate, explicit Taylor—Galerkin method.

3.6.2.2 Spatial discretization Let us now illustrate the construction of an ex-
plicit third-order Taylor—Galerkin method for the convection problem (3.4a). Mixed
Dirichlet and Neumann conditions are prescribed on the inlet portion of the boundary,
as specified in equations (3.4c) and (3.4d). The convection velocity a is assumed to
be divergence free, so that a • Vw = V • (u a).

To produce the Galerkin variational form associated with scheme (3.42), we multi-
ply it by the test function w and integrate over the spatial domain 0. After integration
by parts, the following variational problem is obtained where Aw = un+1 — un

denotes the incremental unknown.
Given un, find Au € *S, such that for all w € V,

Aw\ A*2 / «Au\ A*2* / « u \ * / , r r
H -- a • vw. a • v -— • -- — (a • n)w. a • V

' '
. .

6 ' At 6 v At / r °«<

^(a-Vun)} - ((a-n)w,un - ^(a- Vun)}2 / \ 2 /po«t

+ ~ (a - Vw, sn+1/3) - ^ ((a • n
^ j£

+ (w, -Asn+^ + ±sn} + (w, 5^ + . (3.43)
\ 4 4 / V 4 4 / r ^

Note that the term responsible for the third-order accuracy of the explicit Taylor-
Galerkin method, which we call TG3, introduces a modification to the standard mass
matrix which nevertheless remains symmetric if only Dirichlet boundary conditions
are present.

Notice also that the integration by parts produces boundary terms, which on a
portion F^ of the inlet boundary generate a natural condition for the prescribed
normal inlet flux h in (3.4d). As shown by equation (3.43), the boundary term on the
outlet boundary contributes partly to the matrix governing the incremental unknown
Au, the remainder being part of the known independent term. The boundary terms
on Tout are necessary to obtain the correct form of the discrete equation at nodes on
the outlet boundary of the computational domain. Neglecting these terms generates
spurious reflections at outflow boundaries (Donea and Quartapelle, 1992).

The linear system to be solved at each time step has characteristics similar to
the one obtained by applying the second-order Lax-Wendroff scheme with finite
elements. The advantage here is that, with similar computational cost, we obtain
third-order accuracy. The generalized mass matrix of TG3 is tridiagonal in 1D and
has the typical profile of a stiffness matrix in 2D and 3D. Generally, the matrix
is characterized by a diagonal dominance that allows an approximate but accurate
solution of the corresponding linear system with a few Jacobi iterations.

Remark 3.7. When the velocity field a and the source term s are functions of
space and time, as originally stated for the initial boundary value problem (3.4),
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the third-order explicit method (3.42) becomes

A/2 A/2A/2 i
(an • V)2 - =H< - V) - At(an - V) un

6 J6

Af2

r+1 - («n+1 • V)s"+1] + ̂  [«? - ("n - V)«»] , (3.44)

where an+1 = a(z, tn+1 ), etc. Here, the time dependence of the characteristic
velocity causes the modified mass matrix to lose its symmetric character.

Remark 3.8. The Taylor—Galerkin method can be applied as well in the solution
of nonlinear conservation law equations of the form

if +*•/<»> = ••
Examples will be given in Chapter 4 where the inviscid Burgers' equation and
the Euler equations of gas dynamics are considered.

3.6.2.3 Stability analysis For the ID convection equation (3.27), the TG3
scheme (3.43) produces the following discrete equation at an interior node j of a
uniform mesh of linear elements of size h:

(l + 1(1 - <72)<52) (UJ+1 - u?) = -\C6u» + \C262ul (3.45)

where use has been made of the central difference operators, see Table 3. 1 . The
amplification factor of the TG3 scheme is given by

and the stability condition is \C\ < 1. The TG3 scheme possesses the unit CFL
property and its accuracy characteristics are illustrated in Figure 3.6 which shows
the diagrams of its phase and amplitude errors. The comparison with the same
data in Figure 3.2 for the semi-Lagrangian method with cubic interpolation and the
characteristic Galerkin method of Morton reveals that the phase is exact in the three
methods for C = 1/2 and (7 = 1, and that the phase error is almost identical, the
TG3 scheme being slightly inferior in the range 1/2 < C < 1.

Unfortunately, the TG3 scheme experiences a drastic reduction of its stability range
in multidimensional situations. As shown in Figure 3.7, the limit curve for stability
in 2D strongly depends on the orientation of the Courant vector c whose components
are (cx, cy}. It is given by the equation

2/3 + 2/3 _ lLx ' y '
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dimensionless wave number dimensionless wave number

Fig. 3.6 Accuracy properties in pure convection of the third-order explicit Taylor—Galerkin
scheme TG3: amplification factor modulus \G\ (left) and relative phase error <f>numer /<t>exact
(right).

TG3 - 2S

0

Fig. 3.7 Stability range in two-dimensional convection of one-step Taylor—Galerkin method
(TG3), two-step Taylor—Galerkin method (TG3-2S), and Lax-Wendroff finite element (TG2)
and finite difference (LW/FD) methods.

where the components of the Courant vector are defined as follows:

, cy = av/\t/hy.cx —

with ax and av being the velocity components and hx and hy the mesh sizes along
the Cartesian coordinate directions. The ID stability condition |C| < 1 becomes in
the most restrictive 2D case, that is |cz| = \cy\ := \C\, \C\ < 17(2^) = 0.353 and
\C\ < l/(3V$) — 0.192 in 3D. As shown below, a two-step version of the method can
be developed which possesses a more extended stability domain in multidimensional
situations.
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Table 3.4 Modified equation in pure convection for two second-order schemes (TG2 and
leap-frog) and two higher-order methods (3rd-order TG3 and 4th-order LFTG).

TG2 + Linear elements

Ut + aux =
ah3 s*>(-\ o/^2^ d^u , ah* (-,

~ ~ ~

TG3 + Linear elements

ut + aux =
+ f j ( l - 5C2

Leap-frog + Linear elements

Ut + aux —
ah2 r<1 93u , q/t4 /-Q~ ~

LFTG + Linear elements

Ut + aux =

Figure 3.7 also shows that the situation is even worse for the Lax-Wendroff finite
element scheme. The stability limit for Lax-Wendroff in 2D, called TG2, is in fact
given by

3.6.2.4 Properties of the explicit Taylor-Galerkin method The basic dis-
tinguishing features of the third-order explicit Taylor-Galerkin method TG3 can be
underlined as follows:

1 . The modified equation associated with TG3 is reported in Table 3.4 where it can
be compared with that of the second-order Lax-Wendroff finite element method
(TG2). Note that the leading dispersion error due to the time discretization has
moved from the third- to the fifth-order derivative because of the increased time
accuracy. The leading term of the dissipation error is a fourth-order derivative
in both the second-order TG2 scheme and the third-order TG3 scheme. The
necessary condition for numerical stability in ID is C2 < 1 for TG3 as com-
pared with C2 < 1/3 for the Lax-Wendroff finite element method (TG2).
Moreover, the lowest-order terms of both dispersion and dissipation errors for
TG3 are found to be zero for C2 = 1. The optimal stability limit and the unit
CFL property of TG3 are confirmed by the amplification factor (3.46) of the
scheme.

2. As already pointed out for the Lax-Wendroff method, the terms in the TG3
scheme, see (3.43), involving (a • V)2 are not to be thought of as an artificial
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numerical diffusion inherent to the scheme. In fact, as far as time-dependent
solutions are concerned, the second-order spatial terms are only an element of
the improved temporal approximation. The tensorial structure of these terms
indicates that the correction introduced by the second time derivative acts only
in the direction of the streamlines, in complete analogy with the SUPG method
discussed in Chapter 2.

3.6.3 Fourth-order explicit leap-frog method

The concept in the Taylor—Galerkin method of improving the time accuracy of finite
element schemes for unsteady convection can be extended to other time-stepping al-
gorithms. As an illustrative example, we mention the fourth-order accurate extension
of the standard second-order leap-frog method

un — u „
2A*

The improved method is based upon the forward and backward Taylor series

A/2 A/3

fl
(3 47)

A/2 Af3

u^-1) = u(tn] - Atu?(tn) + -^uft(t
n) - ^-<t(*

n) + 0(At4),

which by subtraction produce the fourth-order accurate leap-frog method

?;n+l __ ?/«-l 1
- wn , ± A j2 n
~ U ^

The construction of the fourth-order leap-frog Taylor-Galerkin (LFTG) method
then proceeds as for the TG3 method. The LFTG scheme is fourth-order accurate in
time and also fourth-order accurate in space on a mesh of uniform linear elements in
ID. Its stability condition in ID is C2 < 1, while the second-order leap-frog finite
element scheme has the reduced stability limit C2 < 1/3.

Because the leap-frog time discretization is a centered discretization, the method
is non-dissipative, that is |Cr| = 1, in pure convection. The relative phase error of
the LFTG scheme for C = 0.25, 0.50. 0.75 and 0.90 is illustrated in Figure 3.8 in
comparison with its second-order counterpart which cannot be operated at the last
two values of the Courant number. To further appraise the gain in accuracy brought
about by the fourth-order leap-frog Taylor—Galerkin scheme LFTG, we compare in
Table 3.4 its modified equation for pure convection with that for the corresponding
second-order leap-frog method. As can be seen, the LFTG scheme is characterized
by a fifth-order dominating phase error, as compared with the third-order one for the
classical second-order leap-frog method.
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dimensionless wave number dimensionless wave number

Fig. 3.8 Relative phase error <j>numer/<t>exact in pure convection of the second-order (left)
and fourth-order (right) leap-frog schemes combined with consistent linear finite elements.

3.6.4 Two-step explicit Taylor-Galerkin methods

We shall now describe two-step versions of the explicit Taylor—Galerkin method
TG3 which include second time derivatives only and are thus easier to implement
than the one-step method TG3, especially for solving nonlinear multidimensional
hyperbolic problems, see Selmin, Don 6a and Quartapelle( 1985) for details. A further
advantage of the two-step Taylor-Galerkin methods is their extended stability range in
multidimensional situations as compared with the one-step TG3 method. A two-step
third-order method is discussed first. Then, fourth-order ones are briefly presented.

3.6.4.1 Two-step third-order method A two-step version of the third-order
TG3 scheme has been proposed by Selmin (1987). The method, called TG3-2S,
is based on the idea of achieving a third-order temporal accuracy by means of the
following two-step procedure:

=u

J.

= u 4- Atu" 4- —
(3.49)

where the value of the parameter a is left unspecified for the time being. Third-order
accuracy is achieved when combining both steps; the parameter a only influences the
coefficient of the fourth-order term in the overall time series. As a consequence, its
value will only affect the modulus of the amplification factor of the resulting scheme
but not its phase. A convenient way to determine the available degree of freedom, a,
consists in selecting it in order to have, in the ID linear case, the same phase speed
as that of the one-step TG3 scheme, equation (3.45). For the ID linear convection
equation, see (3.27), the fully discrete version of the two-step scheme (3.49) becomes
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(ff1 — Un] = — -
6" ' ? (3.50)

and the amplification factor C?TG3-2S of the parameterized two-step scheme is derived
in the form

1 - | sin2 1 - 2C2 G(t, C, a) sin2 1 - zC sin £
<J-TG3-2Si^,O,Q;j = - - - ., . 2f -

1 - | sm §

where

G £,C7,a = 1 +

It is immediately verified that

GW2S&CM/9) = GTG3(e,C)/?(C,C), (3.51)

where /?(£, (7) is the real function

(3.52)

. 2
l - fs in ' f

1-lsinH

Therefore, for the choice a = 1/9 the two-step procedure (3.49) reproduces exactly
the phase-speed characteristics of the single-step TG3 scheme. The condition of
numerical stability for the two-step method is \C\ < \/3/2 ~ 0.866. Figure 3.9
illustrates the amplitude response of the two-step scheme which appears to be slightly
more dissipative than its one-step counterpart, especially for Courant numbers close
to the stability limit.

It is important to note that the excellent phase properties of the one-step third-
order TG3 scheme can be reproduced exactly by the two-step procedure in 2D and
3D, see Selmin (1987) and Quartapelle (1993). Moreover, as shown in Figure 3.7,
the stability range of the two-step scheme in 2D remains practically unaltered with
respect to that in ID. In fact, the stability limit in 2D is defined by

This is in sharp contrast with the one-step Taylor-Galerkin scheme (TG3), which
experiences a drastic reduction of its stability limit in multidimensional situations.
Thus, the two-step formulation of the explicit Taylor-Galerkin method, besides mak-
ing high-order accuracy accessible for truly nonlinear problems, offers the additional
advantage of giving an isotropic stability domain in multidimensional problems.

Observe that the effect of the modified mass matrix in TG3 is achieved here, for
the two-step scheme, through a double application of the standard consistent mass
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Fig. 3.9 Amplification factor modulus |G| of Selmin's two-step third-order explicit scheme
TG3-2S (left) compared with the one-step third-order method TG3 (right).

matrix. This alleviates the computational effort with respect to the one-step method
(3.43) in which the modified mass matrix depends on the problem unknown.

Remark 3.9 (Vector convection equation). When a system of nonlinear con-
vection equations is considered, the application of the two-step method becomes
much more involved than with a single equation. Examples will be given in
Chapter 4 where the method is applied for solving the Euler equations. We
refer to the articles by Laval (1988) and Laval and Quartapelle (1990), or to
the book by Quartapelle (1993), for the implementation details of the two-step
method in application to a vector convection equation.

3.6.4.2 Two-step fourth-order methods As a last example of high-order ex-
plicit schemes for convective transport, we shall illustrate the construction of two
fourth-order methods suggested by Quartapelle (1993).

Consider the fourth-order explicit temporal approximation

u(tn+l) = u(tn)
A*2

A/3 A/4
i-lt'

It can be transformed into a two-stage method by means of the following factorization:

d_ At2 d2 At3 d3 At4 dt
24

td_
'dt

_
3 dt 12 dt
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which produces the two-stage explicit method

o "10 '6
 x

12 (3.53)
- w + uf 4- - u«.

This two-step method has the same stability and accuracy properties as the classical
fourth-order explicit Runge—Kutta method. For the linear convection equation (3.4a)
the method is stable up to C2 = 1.

As shown by Quartapelle (1993), there is another possibility of achieving a fourth-
order temporal accuracy with a two-step strategy. It is based on two second-order
expansions

u = u
(3.54)

? n+l _ n .
{Jj -—— U/

where the parameters are defined as

a = 0.141, 0 = 0.116, 7 = 0.359.

The stability limit of this alternative two-step fourth-order scheme is \C\ < 0.847
and its phase response properties are found to be superior to those of the two-step
method (3.53). The book by Quartapelle (1993) contains a detailed presentation of
the above two-step fourth-order explicit methods.

3.7 AN INTRODUCTION TO MONOTONICITY-PRESERVING SCHEMES

Up to now, the emphasis has been placed on achieving time-accurate solutions to
unsteady convection problems. Here, we wish to recall that discontinuities may
appear in the solution of convection problems, even if they are governed by linear
equations. This will indeed be the case when discontinuous data are prescribed on
the inflow portion of the boundary.

In such a situation, the numerical solution delivered by stabilized finite element
methods, see Chapter 2, may still present localized oscillations in the vicinity of
sharp solution gradients. The consequence of such undesirable overshoots may be
that some physical constraint, such as for instance positivity of the unknown, might
be violated, thus leading to non-physical results.

There is therefore a need to ensure non-oscillatory, or monotone, numerical be-
havior near strong solution gradients to obtain physically correct results. This aspect
will be discussed in a certain depth in Chapter 4 in connection with the solution of the
Euler equations of gas dynamics. In this section, our aim is simply to introduce the
concept of high-order monotonicity-preserving schemes along the lines introduced
by Harten (1983) (or the recent reprint Harten, 1997). For simplicity, we shall make
reference to the ID convection equation.
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A scheme is said to be monotonicity preserving if monotonicity of the solution
un+1 at time tn+1 follows from monotonicity of the solution un at time tn. By
monotonicity of a solution, one means that the following inequalities hold for all of
its components:

min(wj_i, MJ+I) < Uj < max(uj_i,

An important theorem concerning monotonicity-preserving schemes is due to Go-
dunov (1959) who showed that any linear monotonicity-preserving scheme is at most
first-order accurate in space. Linear monotonicity-preserving schemes add the same
artificial dissipation all over the computational domain and, consequently, are too
dissipative in the smooth part of the solution.

In response to the deficiency of monotone schemes, so-called high-resolution
schemes were developed in the 1980s. Such schemes are at least second-order accu-
rate in the smooth part of the solution, but include a nonlinear (solution-dependent)
damping mechanism that permits a sharp resolution of strong solution gradients.

Central to the development of high-resolution schemes is the concept of total vari-
ation diminishing (TVD) schemes introduced by Harten (1983). The total variation
of a smooth function u is defined as

TV(u) =

and a scheme is said to be TVD if

TV(un+1) <TV(un).

The TVD requirement is less stringent than the monotonicity preservation requirement
and allows a significant improvement in accuracy.

The guiding idea behind the design of TVD schemes is that physical solutions to
scalar hyperbolic equations do not allow the appearance of any new extremum in the
evolution of the unknown. Accordingly, in a TVD scheme the total variation of the
numerical solution is controlled in a nonlinear way to prevent the appearance of any
spurious new extremum.

Most high-order TVD schemes can be viewed as centered-difference schemes with
an appropriate numerical dissipation calibrated so as to preserve monotonicity without
compromising the accuracy. Modern methods use nonlinear numerical dissipation
with diffusion coefficients dependent upon the local behavior of the solution, being
larger near discontinuities than in smooth regions.

Basic references for the construction of TVD schemes in the finite difference
context are, in addition to the pioneering work of Harten, Yee (1987), Hirsch (1990),
LeVeque (1992) and Quarteroni and Valli (1994). Notice that the development of
TVD schemes for use in connection with finite elements is still the object of active
research.

To give a simple example of a TVD scheme, suppose we wish to solve the ID
convection equation (3.27) with a > 0 using the Crank—Nicolson method and lin-
ear finite elements. Using a diagonal mass representation, we obtain the following
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discrete equation at an interior node j:

u?+1 +

where

: -a(ui4-i + W i ) and

are the numerical fluxes for the considered centered scheme. Note that a first-order
upwind scheme would use

— au 1/2

As seen in Chapter 2, full upwinding generally introduces an excessive amount of
numerical damping. Following Yee (1987), the above second-order scheme can be
rendered into a TVD scheme by transforming the fluxes (3.55) as follows:

(3.56)

where Qj+i/2 and <5j-i/2 are limiting functions depending on the solution gradient.
The variations A^+i/2 w and ^3-1/2 u are defined as follows:

Aj+i/2 M = Uj+i - Uj. Aj-_i/2 U = Uj - Uj-i.

The limiting function QJ+I/% depends on three consecutive element gradients

and is of the form

Qj+l/2 = Q(rj+i/2 ?

where
^-*i—1/2 ^ 4-

T i "—- ——— and T* . / —

Two examples for the limiting function Q are

Q(r~ . r+) = minmod(l.r~.r+).

Q(r~ . r+) = minmod(2.2r~.2r+.0.5(r~ +r+)).

The "minmod" function of a list of arguments is equal to the smallest number in
absolute value if all arguments are of the same sign, or is equal to zero if any argument
is of the opposite sign.
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After substitution of the modified fluxes (3.56) in equation (3.55), one gets

- ̂  (a ("?

. *-i'' I ( n I n \ I 1 f 1 /T1 ^ A

Notice that the above TVD algorithm is nonlinear even when it is applied to the linear
convection equation (3.27). To solve this set of nonlinear equations non-iteratively, a
linearized version is usually considered. It consists in the replacement of Q n+1 by Qn

in the l.h.s., see Yee (1987). Another benefit of this linearization is that the scheme,
though involving five points, now leads to a tridiagonal system of linear equations.
This is because, at the (n + l)-th time level, only three points are involved, namely
u**i, w"+1 and w"+i, the other two points being at the n-th time level.

After linearization the implicit TVD scheme reads

n+l , "''-"' (1Ln+l
j 4/i j+l

\OL\/XT. /

Note that the TVD method selectively adds a numerical dissipation, the maximum
value of which is

_ \a\h
^max — n •

The above ID strategy can be adapted to deal with 2D situations. In this case,
as suggested by Donea, Selmin and Quartapelle (1988), one works with segments
connecting adjacent nodes, for instance the element sides in a mesh of triangular
elements. Other examples of high-order monotonicity-preserving schemes will be
given in Chapter 4 where shock-capturing techniques are discussed in detail.

3.8 LEAST-SQUARES-BASED SPATIAL DISCRETIZATION

The implicit Crank—Nicolson scheme discussed in Section 3.4 is not dissipative (pure
convection is considered here). It must therefore be combined with a finite element
spatial representation capable of introducing the amount of numerical dissipation
required to produce stable results in the presence of steep solution gradients.
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In the case of purely convective transport, a stabilization technique can be de-
veloped on the basis of a pure least-squares minimization. Two variants of such an
approach will be described in this section. They require that time discretization is
performed before the spatial discretization and rely on a quadratic functional associ-
ated with the semi-discrete version of the governing equation. Further extensions of
least squares to convection problems using space-time formulations are discussed in
Section 3.10. The book by Jiang (1998) can be consulted for a detailed account of
least-squares finite element methods.

3.8.1 Least-squares approach for the 0 family of methods

An interesting least-squares method for pure convection was originally proposed by
Carey and Jiang (1988) in connection with the B family of methods presented in
Section 3.4.1. Consider the linear convection equation (3.4a) discretized with respect
to time by means of this family of methods, and recall (3.20):

+ 9(a - V) Aw = &sn+l + (1 - 9}sn - (a • V}un.

This equation can be viewed as a spatial strong form that must be solved at each time
step, namely

j&(Au) - / = 0,

where £ = I/ At + 9a • V is the spatial differential operator, and the known source
term is / = 0sn+l + (1 - &}sn - a-Vun. Minimization of the least-squares
functional, (£(Au) — /. £(Au) — /), produces the least-squares equation (still in
the spatial continuum)

(£(«;), £(Au)-/) -0,

which takes the following explicit form:

- + 0o • Vw. -r- + 0a •At 'At

= -- + 9a - Vw, Bsn+l + (l~ B}sn - a • Vun . (3.57)

This equation highlights the symmetric character of the implicit operator of the least-
squares method. On a mesh of uniform linear elements in ID, this scheme provides
the fully discrete equation

o / / 2

and consequently the following amplification factor:

Gr\ =
- 2(| + 2(1 - 0}9C2) sin21 -

l-2(f-202(72)sin2f
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dimensionless wave number dimensionless wave number

Fig. 3.10 Numerical properties of the least-squares method of Carey and Jiang for Crank—
Nicolson 6 = 1/2 (top) and backward Euler 6 = 1 (bottom) for several values of the Courant
number.

From the previous equations one can see that the least-squares scheme is uncon-
ditionally stable for | < 9 < 1 (Carey and Jiang, 1988). Figure 3.10 displays its
numerical properties for 9 = 1/2 and 0=1 . For 0 = 1/2 the scheme has a rather
accurate phase response provided it is operated with \C\ < 1. But, the fully implicit
scheme corresponding to 0 = 1 has a poor phase accuracy, except for small values
of the Courant number. This scheme can nevertheless be of interest for computing
steady-state solutions by means of a false transient.

3.8.2 Taylor least-squares method

An extremely accurate least-squares method for the spatial discretization of transient
convection problems was introduced by Park and Liggett (1990). Their method com-
bines Taylor—Galerkin and least-squares concepts. It starts from the time discretized
version of the linear convection equation (3.4a) provided by the following fourth-order
accurate implicit scheme originally used by Harten and Tal-Ezer (1981):

^. = I (u?
+l + <) - ^ «,+1 - u?t) . (3.58)
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Assuming a time-independent convection velocity, the scheme reads

n(^}=-a.Vun + r, (3.59)

where

£ = l + ̂ a-V + ̂ (a.V)2 and
Zi L£

r = \(sn+l + *n) - ~(*?+l - O + ~(a - V)(sn+1 - sn}.

The quadratic functional associated with this semi-discrete equation is

and the minimization procedure leads to the following least-squares weighted residual
formulation:

This equation can also be derived if one recalls the strong form (Euler-Lagrange
equation) associated with a least-squares functional induced by £(u) = s. It corre-
sponds to the higher-order problem ,C*/C(w) = £*(s), where£* is the formal adjoint
of operator £. In the present case the differential equation is defined in (3.59), and
thus the adjoint operator is

It follows that the Taylor least-squares weak formulation for the semi-discrete equation
(3.59) could be obtained by applying the standard Galerkin projection to the time
integration scheme:

Aw

Due to the presence of third- and fourth-order derivatives in this least-squares
equation, Park and Liggett (1990) employed Cl finite elements (cubic Hermitian
polynomials) instead of the standard C° finite elements.

Cl finite elements require, as nodal unknowns, the value of the interpolating func-
tion and also its derivatives, namely u and u x in ID. This implies an important increase
in nodal unknowns. For instance, a 2D four-noded element constructed by the tensor
product of the ID Hermite cubics has 16 unknowns, four per node: u, u x, uy and
uxy, see for instance Carey and Oden (1983). This increase is more dramatic in 3D.
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The study of the amplification factor and accuracy properties of the resulting
scheme is given in the original paper. It also compares the Taylor/Least-squares
scheme with the third-order explicit Taylor—Galerkin method and other least-squares
methods. Numerical results for 2D calculations indicate that the Taylor/Least-squares
scheme is extremely accurate. Park and Liggett (1991) also implemented this method
in 3D using serendipity-type Hermitian elements, which have less nodal unknowns
compared with the complete Hermite interpolation and thus less accuracy.

3.9 THE DISCONTINUOUS GALERKIN METHOD

Due to the compactness of its formulation, the discontinuous Galerkin method initially
introduced by Lasaint and Raviart (1974) is being increasingly used in the solution
of convection and convection—diffusion problems, see for instance the work of Cock-
burn (1998) and Baumann and Oden (1999). We briefly introduce the discontinuous
Galerkin method in application to the linear first-order hyperbolic problem

ut + V-(au) = 8(x,t) inftx]0,T[, (3.60a)

u(x, 0) = UQ(X) on ft at t = 0, (3.60b)

u = UD on T# x ]0, T[. (3.60c)

The discontinuous approximations belong to a so-called broken space. Given a
regular partition, Th, of the computational domain ft into subdomains ft e, the test
functions belonging to the broken space V(Th) are continuous and smooth in every
element fie 6 Tft(ft), but discontinuous across inter-element boundaries. Moreover,
as previously done in Section 3.4.2, the trial space varies with time, namely

V(Th) := {w <E £2(ft) | w\a<£ ft2(fte)Vfte G Th(ft)}

st(T
h] = {u | u(-,t) € £2(ft), u(-,oin- € n*(ne)te [o,r] vne e r*(ft)} .

Typical elements of <St(T
h) and V(T/l) are non-zero functions on one element fte

and zero everywhere else on the mesh.
The discontinuous Galerkin formulation of problem (3.60) can then be stated as

follows: given UQ ( x ) , for any t 6 ]0,T[findw 6 St(T
h), such that u(x,0) = u0(x)

and

(w,ut + V- (au) -«)n« - (w, (u+ -u~)(a-ne))9 n e . i n x r i n

-ne =0

for all w € V(Th) and J7e e T h ( f t ) . Here ne is the outward normal to element e.
Note that this weak form is local, that is it is defined over one element, not global,
over the complete spatial domain ft. This is possible because the test functions are
discontinuous along inter-element boundaries. Note that this does not imply that
each element can be solved independently. In fact, the boundary integral introduces



THE DISCONTINUOUS GALERKIN METHOD 125

Fig. 3.11 Notation for discontinuous Galerkin method.

a weakly enforced continuity condition across the boundaries, which couples the un-
knowns of adjacent elements. As shown in Figure 3.11, to cope with the discontinuity
of the field variable across inter-element boundaries, one defines

u± = lim u(x ± ea) forx G d£te.
6-S-0 +

Moreover, the inlet portion of the element boundary, <9fie , is defined by

dtte>in = {xe dtte\a-ne(x) < 0} .

An alternative discontinuous Galerkin formulation is obtained by integration by
parts of the divergence term. It provides a natural boundary condition for the con-
vective flux and reads as follows:

(w, ut - s)Qe - (Vw • a, u)^e

+ (w.u~(a-ne))dQe^rin + (w,uD(a-ne})daenrin =0. (3.61)

Despite their conditional stability, the use of explicit time-stepping schemes is very
convenient here, because the global mass matrix is block diagonal with uncoupled
blocks. The problem can then be solved element by element in one sweep by inverting
at very low cost the element mass matrix. In Section 3.11.4 we shall illustrate the
application of the discontinuous Galerkin method in the solution of a simple ID
problem of propagation of a steep front. Another attractive aspect of this method is
its easy combination with adaptive refinement procedures. This is because in each
element the polynomial order can be adapted to the local smoothness of the solution.
A typical example is the adaptive-order discontinuous Galerkin method developed by
Baumann and Oden (2000). In Chapter 4 this method is discussed in more detail and
used to solve the Euler equations of gas dynamics.
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3.10 SPACE—TIME FORMULATIONS

Up to here, time discretization of the convection equation has been performed using
finite difference formula while finite elements are employed for spatial discretiza-
tion only. As a matter of fact, finite element interpolations can also be used in the
time domain. Methods in this class include the time-discontinuous Galerkin method
(Jamet, 1978; Johnson et al., 1984), the space-time least-squares method proposed by
Nguyen and Reynen (1984), as well as the space-time Galerkin/Least-squares algo-
rithms developed by Shakib and Hughes (1991) and the space—time integrated least-
squares approach proposed by Perrochet and Azerad (1995). In fact, the weighted
residual formulation is now extended over the space-time domain. Usually, low-order
approximations, such as piecewise constant or piecewise linear ones, are employed
to describe time dependency. If a linear interpolation over a time slab ]t n, tn+1 [ is
assumed, the local space-time interpolation is written in product form

uh(x,t] = £ NA(x)((l -0)nn
A + 0un

A
+1).,

A=l

where 9 = (t - tn)/(tn+1 - tn}.
Let us now illustrate the extension to the space-time domain of finite element

methods for transient convection problems. Note that the method has also been
applied to the Navier—Stokes equations to be discussed in Chapter 6, see for instance
Masud and Hughes (1997).

We consider piecewise continuous approximations in space and discontinuous
approximations in time. Discontinuous approximations in time allow us to solve
independently for each time slab instead of solving a global problem over the whole
time domain. Recall that such a procedure was already used in space when we
discussed the discontinuous Galerkin method in Section 3.9.

The time domain is partitioned in nst sub-intervals, where each sub-interval is
defined as In = }tn, tn+1[, n = 0, 1. . . . . nst — 1. Space-time slabs are then obtained
in the form

Qn = ft x In.

For the considered space-time slab Qn, the spatial domain ft is subdivided into nei
elements, fie, e = 1, . . . . nei, giving space-time element domains

= Sle xln e = l . . . n i .

3.10.1 Time-discontinuous Galerkin formulation

To introduce time-discontinuous approximations in a simple context, let us first con-
sider the time-discontinuous Galerkin formulation (Johnson et al., 1984; Shakib, 1989;
Shakib and Hughes, 1991). Since the finite element interpolation is discontinuous at
the space-time slab interfaces, it is useful to employ the notation

uh(t^} = lim uh(tn±e).
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The finite element spaces for the trial and weighting functions are defined as follows:

n.t-1

J-l (3'62)

n=0

Note that continuity over Q n implies continuity in space but does not require a continu-
ous interpolation between time slabs. Although Pk indicates the space of polynomials
of total degree < A; (a complete basis of degree k, see Section 1.5.2) the degrees of
the polynomials in space and time can be chosen independently.

The weighted residual formulation of the homogeneous linear convection equation
(3.4a) with Dirichlet inlet conditions is: forn = 0,1,.. . , nst — 1, find uh € <S£,
such that for all wh e V£,

f
JQ

~ uh(tn_}) dtl = 0, (3.63)

with the initial condition uh(x,t°_) = UQ(X). The last integral in (3.63) is a jump
condition which imposes a weakly enforced continuity condition across the slab
interfaces and is the mechanism by which information is propagated from one slab to
another.

We shall use finite element approximations over a space-time slab which are
piecewise polynomials in space and linear in time; that is, for (x, t) G Q n = 0 x In,

nnp

Uh(x,t) = ]£ NA^ (®l(t}UA+®2(t)unA+1)-
A=l

NA(X) is the spatial shape function at node A; &i(t) and ©2(i) are the time inter-
polation functions defined for the linear case as

_ j. y..n+1

tn+l -tn At
t — tn t — tn

tn+l_tn A

and the nodal values of uh for node A at t" and i"+1 are, respectively, u^ and
u^+1. The test functions wh for each time slab (recall: piecewise polynomials in
space and linear in time) are similarly defined, NA(X) ®\(t) and NA(X) Qzty) for
A = 1, . . . , nnp. With these definitions the weighted residual equation (3.63) yields
the following couple of equations for each node A:

_

A 4At
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B=l^JJQn

~ NB(un
B-un

B)dn =

The time-discontinuous formulation employing linear approximations in time is
third-order accurate with respect to At and unconditionally stable, see Shakib and
Hughes (1991). Like the standard Galerkin method, the time-discontinuous Galerkin
method must be stabilized in space. For instance, a least-squares approach can be
employed to improve stability without compromising the accuracy. Two variants of
a least-squares space-time methodology are described in the next sections.

3.10.2 Time-discontinuous least-squares formulation

Consider again the homogeneous form of the linear convection equation (3.4a). As
before, the finite element approximations are assumed to be discontinuous in time and
continuous in space. However, instead of the Galerkin formulation, a least-squares
approach is considered, based upon the following space-time quadratic functional:

(ut + a • Vu)2 dfl dt.

This functional is minimized with respect to a variation of the time-dependent un-
known w(x, t). The jump condition enforcing continuity across the slab interfaces
must also be added. Finally, using the trial and test spaces defined by (3.62), we obtain
the following least-squares weighted residual formulation: forn = 0 , l , . . . ,n s t — 1,
find uh e Sj, such that for all wh € Vj,

/
JQ

) rfQ - 0. (3.64)

This time-discontinuous least-squares formulation is also third-order accurate with
respect to At when a linear-in-time approximation is employed.

3.10.3 Space-time Galerkin/Least-squares formulation

To conclude the presentation of space-time finite element methods for convection
problems, we shall describe the space-time Galerkin/Least-squares method proposed
by Shakib and Hughes (1991). For the homogeneous convection equation (3.4a),
the space-time Galerkin/Least-squares weighted residual formulation becomes: for
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n = 0,1, . . . , nst - 1, find uh € <Sj, such that for all wh e Vj,

/Yy/ ti; (ut 4 -a -Vw ;

w

Q"

+ / «/*(*£) (uh(tl) - uh(tn_}} dn = 0, (3.65)
Ja

where wf t(x, t°_) — u(x, 0). The first and the last integrals are the same as in the
time-discontinuous Galerkin formulation (3.63). As before, the last integral is a jump
condition. The second integral is the least-squares operator already encountered in
(3.64). Parameter r was already discussed in Section 2.4.3, but here it is extended to
transient problems and particularized for pure convection following Shakib (1989)

1 IC\

2 \2

The stability and accuracy analysis performed by Shakib and Hughes (1991) indicates
that for linear-in-time approximations the method is third-order accurate with respect
to Ai and unconditionally stable.

3.11 APPLICATIONS AND SOLVED EXERCISES

Several test problems describing purely convective transport are presented in this
section to confirm the accuracy characteristics of the finite element schemes discussed
in the present chapter.

Tables 3.5 and 3.6 summarize the amplification factors and the stability properties
of the most relevant classical schemes discussed here for a uniform linear/bilinear
mesh.

3.11.1 Propagation of a cosine profile

A simple 1D problem is proposed to illustrate and compare the performance of explicit
and implicit schemes. The convection equation (3.27) is solved over the spatial
interval ]0,1[ considering the following initial:

u(x 0) = I i(l + cos(7r(a;-xo)/a)) i f |or~a;o | < <r,
I 0 otherwise,

and boundary condition: u(0, t) = 0 for t > 0, where X0 = 0.2 and a — 0.12.

Explicit methods. The exact solution of equation (3.27) with a = 1 corresponds
to the translation to the right of the initial profile at unit speed. Figure 3.12 compares
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Table 3.5 Amplification factor for different schemes.

Scheme Amplification factor

CN

TG2
2C2)sin2f- iCsin£

l-fsin2!

TG3

TG3-2S
- | sin2| - 2C2

l-|sin2|

2|sn -

CJ

Tadte 3.6 Stability limits for different schemes.

Scheme Stability limits

ID 2D

CN

TG2

TG3

TG3-2S

CJ

unconditional stability

C2 ^ i /o ~2/3 2/3
< 1/0 CZ + Cy *

C2 < 1 cx/3 + 4/3 < 1

C2 < 3/4 c2 + cJ < 3/4

unconditional stability for 1/2 < ^ < 1
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Fig. 3.12 Propagation of a cosine profile (explicit methods): comparison between the exact
solution (dotted line) and the Lax-Wendroff finite element solution with diagonal mass (LW-
FD), consistent mass (TG2) and the third-order Taylor—Galerkin solution (TG3).

the numerical solutions obtained at time t = 0.6 using a mesh of 50 uniform linear
elements and different values of the Courant number C.

The problem is solved using in succession with:

o the second-order Lax-Wendroff finite element method is combined with a di-
agonal mass representation (LW-FD);

o the Lax—Wendroff finite element method is combined with a consistent mass
representation (TG2);

o the third-order explicit Taylor—Galerkin scheme TG3.

We refer to Section 3.4.2.4 for the Galerkin formulation of the Lax-Wendroff method
and to Section 3.6.2 for the Taylor—Galerkin method.

Figure 3.12 shows that both schemes using a consistent mass matrix exhibit a
better phase accuracy than the Lax-Wendroff scheme combined with a diagonal mass
representation (LW-FD). Note that the Lax-Wendroff scheme with consistent mass
representation (TG2) cannot be operated with C2 > 1/3, Moreover, it shows a phase
lead at C= 1/2.
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Fig. 3.13 Propagation of a cosine profile (implicit methods): comparison between the exact
solution (dotted line) and the Crank—Nicolson solution with diagonal mass (CN-FD), consistent
mass (CN-FE) and the fourth-order Taylor—Galerkin solution (TG4).

These findings are fully consistent with the phase error diagrams in Figure 3.3.
As regards the third-order accurate TG3 scheme, we note that it has a rather uniform
phase accuracy over the entire stable interval 0 < C < 1 of the Courant number.
This is in agreement with the phase-speed characteristics reported in Figure 3.6.

Implicit methods. Figure 3.13 shows the results of the same convection problem
obtained with Galerkin and three implicit schemes, namely:

o the second-order Crank—Nicolson method combined with linear elements and
a diagonal mass (CN-FD);

o the same method but with a consistent mass representation (CN-FE);

o the fourth-order Taylor—Galerkin method (TG4) resulting from the combination
of the Harten and Tal-Ezer time scheme in equation (3.58) with linear elements
and a consistent mass representation.

The Galerkin formulation of the Crank—Nicolson method is described in Section
3.4.2.3. For the TG4 method, the following variational equation is obtained from
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equations (3.27) and (3.58):

L ( /A a&td&u\ a2&t2dwd&u\1 (L . dun _,

0 (w(*u+-ir^r)--jr-^-^)dx = ~J0 -«
A^^

f
J0

where Aw = un+1 — un. Similarly to the explicit methods, the schemes using finite
elements with a consistent mass matrix show a superior phase accuracy. This is in
agreement with the phase-speed characteristics reported in Figure 3.4. Observe that
the phase error for the Crank-Nicolson/consistent finite element scheme increases
with the time-step size, while the fourth-order accurate implicit method shows an
excellent phase response at all values of the Courant number.

3.1 1 .2 Travelling wave package

This example tries to visualize the influence of numerical damping and phase lag for
different explicit and implicit methods. The conclusions drawn from the graphical
representations of equations (3.36) (accuracy analysis) are recovered in this practical
example. An initial condition is convected at a unitary speed over a uniform mesh of
linear elements. It is defined as the product of a square wave an a sinusoidal wave,

u(x,Q) = exp(-(ai(z + 1 - /3i)ni)) exp(-(a2(l -x- #>)n2)) sin(«x),

with ai = 02 = 7, m = n2 = 30, ft = l/\/2, #2 = 0. and K = 207r- The element
size is chosen such that the sinusoidal wave induces a dimensionless wave number
£ — kh = 7T/4. This value corresponds to the minimum number of elements (eight)
per wave length to accurately represent the sinus. On one hand, this high frequency
at £ = 7T/4 will be affected by the phase errors. On the other, the amplitude of this
wave (controlled by the square function induced by the exponentials) will be affected
by the amplitude error.

The time increment for the explicit methods has been chosen such that the Courant
number is 90% of the stability limit, Section 3.5.2 and Table 3.6. This criterion is
usually employed in practice. Implicit methods are stable for every time increment.
Their precision degrades for large values of the Courant number, C, and, usually, at
C = 1 they present their maximum accuracy. Thus, for comparison purposes, the
time increment is chosen such that C = 0.9.

Figure 3.14 shows the results for different methods. Phase errors clearly affect the
second-order, explicit, methods: Lax—Wendroff with a diagonal mass matrix repre-
sentation (LW-FD), that is finite differences, Lax-Wendroff with the consistent mass
matrix (TG2) and leap-frog. As noted earlier, the diagonal matrix representation
increases the stability range (LW-FD uses a larger time step) but accuracy is compro-
mised: important amplitude errors. The third-order explicit Taylor—Galerkin scheme
(TG3) shows its superior behavior, in particular with respect to phase errors, due to
its higher-order time accuracy.

There is not a clear improvement with second-order implicit methods: Crank—
Nicolson with diagonal matrix representation (CN-FD), Crank—Nicolson with a con-
sistent mass matrix (CN-FE) and the least-squares Crank—Nicolson (CJ), see Section
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LW-FD, C=0.9

LF, C = 0.9/sqrt(3)

CJ, C = 0.9

TG2, C = 0.9/sqrt<3)

1 5 2 2 5 3 0 0 5

TG3, C = 0.9

CN-FE. C = 0.9

TG4, C = 0.9

15 2 25

Fig. 3.14 Comparison between different explicit and implicit methods for £ = Tr/4.
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3.8.1. They all show large phase errors and the least-squares formulation, as ex-
pected, is over-diffusive. The one-step fourth-order Taylor—Galerkin method (TG4)
introduced in the previous example, shows very accurate results because of its high-
order time accuracy.

This example, however, represents a limit case: £ = kh = 7r/4. Figure 3.15
shows results of the same problem (in particular, same mesh) with a different initial
condition: the parameter K is modified, K — 10?r, in order to have £ = kh = 7r/8.
All methods show a clear improvement, except for Crank-Nicolson with diagonal
matrix representation (CN-FD), which still presents large phase errors, all the other
results seem acceptable. The accuracy of high-order schemes, TG3 and TG4, is still
remarkable.

3.11 .3 The rotating cone problem

This classical test problem for 2D convection schemes considers the convection of a
product-cosine hill in a pure rotation velocity field. The initial data is

if X? + Xf < 1,
\^ j — ^

1 0 otherwise,

where X = (x — x0)/er, and the boundary condition is u = 0 on Fm. The initial
position of the center and the radius of the cosine hill are x o and a, respectively. In the
examples they are chosen as #0 = (|,|) and a = 0.2. The convection field is a pure
rotation one with unit angular velocity, namely a(x) = (— £2, #1). A uniform mesh
of 30 x 30 four-node elements over the unit square [— |, |] x [— |, |] is employed
in the calculations.

Explicit methods. The numerical solutions are shown in Figure 3.16 after a full
revolution completed in 200 time steps (Ai = 2?r/200). They have been computed
using three explicit finite element schemes in the Galerkin formulation, namely:

o the second-order Lax-Wendroff method combined with bilinear elements and
a diagonal mass representation;

o the Lax—Wendroff method combined with bilinear elements and a consistent
mass representation (TG2);

o the third-order explicit Taylor-Galerkin scheme (TG3).
The weak form for the Lax-Wendroff method is the particularization of equation
(3.29) for the case of s = 0 and h = 0, namely

Similarly, from (3.43) we determine the weak form for the TG3 method

_ *^ , . _
a. V»,o. V -—(„.„)«, ,«. V' A? -g - , ^ -—, —

a -Vw,«" -^ (a -Vu™)) - ([a-n)w,un ~~(a
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LW-FD, C=0.9

CN-FD, C=0.9

CJ, C = 0.9

2 25

TG2, C = 0.9/sqrt(3)

TG3. C = 0.9

0 05

,. CN-FE,C = 0.9

2 5 3 0 O S

TG4, C = 0.9

Fig. 3.15 Comparison between different explicit and implicit methods for £ = ?r/8.
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To compare the accuracy of the various explicit methods, the maximum and minimum
values of the computed solutions are provided in Figure 3.16. The greater accuracy
of the finite element schemes employing a consistent (TG2) or generalized (TG3)
mass matrix is clearly apparent. Admittedly, the consistent finite element schemes
are computationally more expensive than the Lax-Wendroff scheme using a diagonal
mass matrix, because the solution of a banded (symmetric) linear system is required
at each time step.

Implicit methods. We repeat the same problem using now the implicit Crank—
Nicolson method. The first tests are performed using the Galerkin finite element
formulation. The associated weak form is given from (3.28) for s and h equal to zero,
namely

\ 1 1
2 \ ' / o V ̂  'z

= (Vw,aun) - ((a-n)w,un)Tout.

Three increasing values of the time step are employed, which correspond to a
complete revolution of the cone in, respectively, 120, 60 and 30 time steps. In this
way, we shall appraise the behavior of the Crank—Nicolson/Galerkin method beyond
the stability limit of the explicit TG3 scheme. The numerical results after one complete
revolution of the cone are displayed in Figure 3.17. Note that the Crank—Nicolson
scheme with the Galerkin formulation represents a non-dissipative method in pure
convection. Moreover, the phase accuracy of the method decreases when the time
step is increased. As a result, significant non-physical oscillations develop as soon
as the time-step size exceeds the stability limit of the explicit schemes.

These oscillations can be attenuated using a dissipative spatial formulation, such
as the least-squares FEM of Carey and Jiang described in Section 3.8.1. From (3.57)
we obtain the weak form for this method

7/j X /\7/ 1 \ / ///) T

——h -a- Vu>, — 1—a- VAw J = -( -—I—a-Vw.a-Vw r

A* 2 At 2 J \At 2

Note that the dissipative effect of the least-squares approach increases with the
square of the time step. Again, the rotating cone problem is solved using 120, 60
and 30 time increments for a full rotation. Figure 3.18 reports the results which can
be compared with those in Figure 3.17 for the Galerkin approach. The dissipative
nature of the least-squares formulation results in lower values of the cone height with
respect to the Galerkin results in Figure 3.17. Also, reduced minimum values of the
computed solutions are obtained with the least-squares approach.

3.11.4 Propagation of a steep front

Crank—Nicolson methods. This 1D problem considers the convection at unit
speed of discontinuous initial data. The discontinuity occurs over one element and is
initially located at position x = 0.2 of the computational domain ] 0,1[. The inlet con-
dition w(0, t) = 1 is imposed. A mesh of uniform linear elements of size h = 1/50
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Fig. 3.16 Convection of a cosine hill in a pure rotation velocity field: comparison of the
numerical solutions after a complete revolution calculated with Ai = 27T/200 by means of
(Top): Lax-Wendroff/diagonal mass scheme (umax = 0.8186, umin = —0.1774); (Middle):
TG2 (ttmax = 0.9830, umin = -0.0186); and (Bottom): TG3 (timax = 0.9835, ur

-0.0148).
*min
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Fig, 3.17 Convection of a cosine hill in a pure rotation velocity field using the Crank-
Nicolson/Galerkin method: comparison of the numerical solutions after a complete revolution
computed with (Top): At = 27T/120, wmax = 0.9969, um-,n = -0.0454; (Middle): At =
27T/60, Umax = 0.9691, itmin = -0.1096; and (Bottom): At = 2fr/30, -umax = 0.8931,
ttmin = -0.2694.
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Fig. 3.18 Convection of a cosine hill in a pure rotation velocity field using the Crank—
Nicolson/least-squares method: comparison of the numerical solutions after a complete rev-
olution computed with (Top): At = 27T/120, um&x = 0.9691, umin = -0.0266; (Mid-
dle): A* = 27T/60, Wmax = 0.9165, wmin = -0.0616; and (Bottom): At = 2rr/30.
Umax = 0.8370, Wmin = -0.2009.
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Fig, 3.19 Propagation of a steep front using the Crank—Nicolson scheme with the Galerkin
method (left) and with the least-squares method (right). The Courant number is C — 0.75 in
both cases. The graphs show the computed solutions at time t = 0.60, together with the initial
profile and the exact solution.

is employed. The results at time t = 0.6 are displayed in Figure 3.19 together with
the initial data. They were obtained (for a Courant number C = 0.75) by combining
the Crank—Nicolson scheme (with linear elements) and (1) the Galerkin formulation,
and (2) the least-squares formulation of Carey and Jiang (1988), see Section 3.8.1.

Note that Crank—Nicolson with least-squares succeeds in removing the spurious
oscillations induced by the Galerkin formulation over the whole computational do-
main. Since Crank—Nicolson is not a monotone scheme, residual oscillations remain
at the front. These could be removed using nonlinear viscosity, which is added at the
front to render the scheme locally first-order accurate, see Section 3.7.

Discontinuous Galerkin in space and the second-order two-step Lax-Wendroff
method in time. The steep-front problem is again solved with a uniform mesh of
50 linear elements. The two-step TG2 method integrates in time the semi-discrete
equations resulting from the discontinuous Galerkin method. The method follows
the two-step rationale presented in Section 3.6.4, see also Section 4.2.3.2:

,n+l n+1/2

Mid-interval values of the unknown are computed within each element using a diago-
nal mass representation. Denoting by indices i and j the nodal values of the unknown
u in a typical linear element, we have

n-i-l/2 / 4-\n ™ / _ \n+ l /2
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To compute the end-of-step values, we use a consistent mass representation and obtain
the following equations from expression (3.61):

£ (2uf + «;) = -\ (u+ + «7

from which we obtain upon inversion of the element mass matrix:

/ +\n+l / +sn aAi / _ + _ \n+ l /2

/ _ \n+l _ / _xn OZAC , + _ _ v n + l / 2

As explained in detail in Section 4.4.2, artificial diffusion is needed close to zones
of sharp gradients to avoid spurious oscillations in the numerical solution. Here,
artificial diffusion consists in adding the following terms to the r.h.s. of the second-
step equations:

-T2~((WJ ~w?)n - (w,7 - ut-i)j at node i,

at node j.

Note that these terms emanate from the usual Galerkin term for the diffusion operator:

E
a

-^ f dw du
^ / ^^-^-
-* JQC OX OX

Zero diffusive flux is imposed at both extremes of the computational domain. The
coefficient of numerical diffusion ve is computed in each element $le as a function

of the local value of the second derivative of the unknown: v e = — max(d,. rf,),
where

d =
 UJ ~ut -u-7 +uti d =

 uJ+i ~ "j ~ uj + ut
~ '' ' ~ ~~u~ + u +MJ~ + u'i'_l u~+l + u~j~ + uj + u

Note that we are actually solving a convection-diffusion problem, instead of a pure
convection one. The stability limit of the two-step Lax-Wendroff method applied
to the steep-front problem was found to be C = 0.30. This reduced stability is
compensated by the extremely low cost per time step of the discontinuous Galerkin
method. The results obtained with C = 0.30 are displayed in Figure 3.20. There are
no spurious oscillations, but the discontinuity is spread over a few elements through
the action of the added diffusivity.
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3 06)-

5

Fig. 3.20 Propagation of a steep front using the discontinuous Galerkin method and the
two-step Lax-Wendroff method in time. The Courant number is C = 0.30. The graphs show
the computed solutions u~ (left) and u+ (right) at time t = 0.60, together with the initial
profile and the exact solution.

Space—time methods. We repeat the solution of the problem using three space-
time methods, namely:

o the time-discontinuous Galerkin formulation described in Section 3.10.1 ;
o the time-discontinuous least-squares formulation described in Section 3.10.2;
o the space—time Galerkin/Least-squares formulation described in Section 3.10.3 .

Linear finite element approximations are employed in both space and time. Two
values of the Courant number are used with these unconditionally stable methods,
namely, C = 1, and C - 2.

Time-discontinuous Galerkin: the developments of Section 3.10.1 induce the fol-
lowing partitioned matrix system for the nodal unknowns u n+1 and un :

(M + ̂ Atc) un+1 - (M - i Ate) un+ = o
v o / v o /

(M + i Ate) un+1 + (M + ? Ate) un+ = 2 M un~ ,

where M denotes the mass matrix and C the convection matrix. The condition
wn+1(l) = un (1) = 1 is then enforced to satisfy the inlet condition. Note that
this third-order accurate and unconditionally stable method requires the solution of
an algebraic system double the size of usual time-stepping algorithms. Results are
displayed in Figure 3.21. Once again, oscillations extending over the whole com-
putational domain characterize the Galerkin formulation. Note that the level of the
spurious oscillations appears to decrease when the Courant number is increased.

Time-discontinuous least-squares: here, we use the pure least-squares approach
described in Section 3.10.2. The partitioned matrix system for the nodal unknowns
un+i an(j un js now O5taine(j jn me form

+ ia2 At2K) un+1 - (M - AtC + ia2At2K) un+ =

(-M - AtC + ia2 At2K) un+1 + (2M + ^a2 At2K) un+ = M un~ .



744 UNSTEADY CONVECTIVE TRANSPORT

C=1 C=2

Fig. 3.21 Propagation of a steep front using space-time methods with Courant numbers C —
1 (left) and (7 = 2 (right). Different methods are employed: the space—time Galerkin (top),
the space-time least-squares (middle), and the space—time Galerkin/Least-squares (bottom).
The curves show the computed solutions at time t = 0.60, together with the initial profile and
the exact solution.

Here, matrix K is a diffusivity matrix accounting for the numerical dissipation intro-
duced by the least-squares method. Results displayed in Figure 3.21 show that pure
least-squares is over diffusive and smears out excessively the steep front. In fact,
from the previous equations, we see that the added diffusivity is proportional to the
square of the Courant number.

Time-discontinuous Galerkin/Least-squares: we now follow the GLS approach
for bilinear space-time elements described in Section 3.10.3. The partitioned matrix
system for the nodal unknowns un+1 and un now depends on the stabilization
parameter r. We have selected the value of T as given in expression (3.66). In terms
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of the Courant number, this gives

The partitioned matrix system for the nodal unknowns u n+1 and un is now obtained
in the form:

u
J

n+1

Figure 3.21 depicts the results. Time-discontinuous GLS clearly delivers the best
solution for this steep-front problem. Note that the dissipation introduced by the
GLS operator also increases with the value of the Courant number. In fact, from the
previous equations and the definition of the stabilization parameter r, we see that
the added diffusivity of the GLS method is proportional to C2/\/l + <72. The GLS
method is nevertheless significantly less diffusive than pure least-squares.



4

Engineering practice goes beyond scalar linear hyperbolic equations. This chapter
is concerned with nonlinear systems of hyperbolic equations. An important and well-
known problem of this class is the modeling ofinviscid compressible flows governed
by the Euler equations of gas dynamics. The nonlinear nature of the Euler equations
typically leads to non-smooth solutions characterized by the presence of shocks. Var-
ious finite-element-based strategies are discussed for tracing transient solutions in
the presence of flow discontinuities. The Eulerian description is used throughout the
chapter, except for the finite element treatment of coupled fluid-structure problems
where the Arbitrary Lagrangian—Eulerian (ALE) description is employed because it
is more convenient.

4.1 INTRODUCTION

The development of numerical methods for simulating complex flow problems is of
major importance in view of the numerous applications of fluid dynamics in many
different areas of applied science and engineering. Numerical modeling of fluid dy-
namics problems is indeed of particular relevance to the aerospace and automotive
industries, to the oil industry, in meteorology, hydrology, oceanography, protection
of the environment, as well as in the safety assessment of industrial plants. In recent
years, numerical simulation of flow problems has been extended to several new ap-
plication areas and disciplines. These include coupled problems which combine fluid
mechanics and electromagnetic theory (Maxwell equations), or fluid mechanics and

147

Compressible Flow
Problems

Finite Element Methods for Flow Problems. Jean Donea and Antonio Huerta
Copyright  2003 John Wiley & Sons, Ltd.

ISBN: 0-471-49666-9



148 COMPRESSIBLE FLOW PROBLEMS

biomechanics, such as the modeling of arterial blood flow with the aim of providing
guidance for surgery planning.

The equations governing fluid motion are generally quite complex and of a form
strongly dependent upon the particular problem under investigation. Consider, for
instance, the motion of a fluid under the effect of an explosion: the transient phe-
nomenon is of very short duration and viscosity effects can be neglected. Moreover,
a realistic modeling of such fast-transient dynamics problems requires the compress-
ibility of the fluid to be taken into account. By contrast, if we are to analyze the flow
of a visco-plastic fluid, such as, for instance, in the simulation of forming processes
for fiber-reinforced thermo-plastics, viscosity will be the important factor, while the
fluid can generally be considered as incompressible and its flow as steady. Given
the great variety of fluid mechanics problems, it is advisable to focus attention on a
particular class of problems at a time, rather than attempting to consider the problem
of fluid motion under a general form.

The present chapter is devoted to the finite element treatment of compressible flow
problems governed by the Euler equations of gas dynamics. It starts with a review
in Section 4.2 of the properties of nonlinear hyperbolic equations. We underline
the numerical difficulties introduced by the directional character of propagation of
information in hyperbolic problems and by the possible generation of discontinuities
in the solution, even starting from continuous initial data. Emphasis is then placed
on the numerical treatment of non-smooth solutions by a weak formulation in which
spatial derivatives are no longer acting on the problem variables but only on smooth
weighting functions.

Systems of hyperbolic equations are then treated in Section 4.3 where the Euler
equations governing compressible high-speed gas flow are introduced. We first dis-
cuss the basic properties of the Euler equations and the possible form of the associated
boundary conditions according to the flow regime under consideration. Then, starting
from the strong form of the conservation equations for mass, momentum and energy,
we construct the associated weak variational forms which are the basis of the spatial
discretization by the finite element method. Various options for the spatial discretiza-
tion are considered. This includes continuous or discontinuous interpolation of all
the conservation variables, as well as mixed representations where some variables are
continuous and other are discontinuous across inter-element boundaries.

As already seen in Chapter 3, all second- and higher-order time discretization
schemes are not monotone methods and generate oscillations in the vicinity of sharp
solution gradients. These have to be damped by the addition of artificial dissipation
terms. We discuss in Section 4.4 various spatial discretization techniques of the up-
wind type able to cope with the directional character of propagation of information
in hyperbolic problems. Then, the finite element implementation of specific artificial
viscosity techniques for the accurate representation of shocks and other flow dis-
continuities is discussed in Section 4.5. This includes the construction of so-called
high-resolution schemes.

Most numerical methods designed for compressible flow problems present diffi-
culties when applied to low-speed (low Mach number) flow situations. This is due to
the fast propagation of pressure waves as flow conditions approach the incompressible
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limit. Finite element algorithms can be developed that work for both the compressible
and the nearly incompressible regime. A summarized account is given in Section 4.6.

We then describe in Section 4.7 finite element models for coupled fluid-structure
problems. The response of a linear elastic structure interacting with an acoustic fluid
is treated first. Then, ALE finite element models are discussed for fluid-structure
interaction in the nonlinear regime. Illustrative examples indicate the effectiveness of
the ALE method for problems with moving boundaries and deforming fluid-structure
interfaces. The chapter closes with the presentation in Section 4.8 of solved exercises
illustrating in the simple context of one spatial dimension the finite element solution
of Burgers' and Euler equations.

4.2 NONLINEAR HYPERBOLIC EQUATIONS

4.2.1 Scalar equations

In nonlinear hyperbolic problems discontinuities can be generated from continuous
initial conditions. Such solutions cannot verify the partial differential equation in
the classical sense, but they may satisfy a weak form of this equation. This leads us
to introduce the concept of generalized or weak solutions which admit the presence
of discontinuities provided a condition, called the jump condition, is verified. Weak
solutions are not necessarily unique; an extra condition, the entropy condition, allows
us to determine the physically correct solution. We shall briefly recall these concepts
which are the basis of the numerical approximation of nonlinear hyperbolic equations.
Specialized texts, such as for instance Hirsch (1990), LeVeque (1992), Quarteroni
and Valli (1994) or Godlewski and Raviart (1996), should be consulted for a more
complete exposition of the properties of nonlinear hyperbolic equations.

Let us start the discussion of nonlinear scalar equations by considering the ID
Cauchy problem

f u t + /«(«)=<),

| U(X,0) = UQ(X),

where f ( u ) is a nonlinear function of the unknown u. As in previous chapters ut

represents the partial time derivative of the unknown u, while fx indicates the spatial
derivative of f ( u ) . A classical example of this class of equations is the inviscid
Burgers' equation, where f ( u ) = u2/2, so that equation (4.1) becomes

{ ut + \ — ) — 0 , f ut + uux = 0,
V 2 / x or in convective form: < (4.2)

/ n\ ( \ U ( X . O ) = U 0 ( X ) .u(x,G) = u0(x), I v ' ' uv i

This is a nonlinear transport equation where the convection velocity is the solution
u itself. Thus, the characteristics, see Section 3.3.1, satisfy the equation

dx
-=u(x,t). (4.3)
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u0 = 0 0

w0 = s

U = 0 U = UQ = S
along the characteristics

Fig. 4.1 Increasing continuous initial data produce a continuous solution to the inviscid
Burgers' equation.

0

Up = 1

0

Fig. 4.2
equation.

u=0 0< w < 1
along the characteristics

Increasing discontinuous initial data produce a continuous solution to Burgers'

The material derivative of u along a characteristic can be evaluated from Burgers'
equation (4.2) and the characteristic (4.3)

du du du dx
— = — + — — =ut + uux =V.
dt dt ox dt

This shows that the solution u is constant along each characteristic. Thus, equation
(4.3) implies that the slope dx/dt of the characteristics is constant. Therefore, the
characteristics are straight lines. When the initial data are continuous this property
implies that the characteristic equation is

x = s + u0(s)t, (4.4a)

for any typical space-time point (s, 0) along the x-axis and with a slope u 0 ( S ) defined
by the initial data. Moreover, along this characteristic

u = constant = U 0 ( S ) . (4.4b)

Equations (4.4) provide a parametric representation of the solution u(x, t) of Burg-
ers' equation. This equation possesses a unique solution as long as the characteristics
do not intersect. As shown in Figures 4.1 and 4.2, non-intersecting characteristics
(and thus a unique solution) are obtained for increasing continuous initial data, as
well as for increasing discontinuous initial data. By contrast, see Figure 4.3, if the
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UQ = 1

t

tr = l

0 1 x
Fig. 4.3 With decreasing initial data the characteristics x = s + UQ(S) t intersect causing
the solution to become discontinuous.

initial data are such that the derivative duo(s)/ds is negative at some point of the
x-axis, then there is a critical time tc at which characteristics first cross, causing the
solution to become discontinuous. Let us illustrate the possible situations by means
of three examples.

First, for continuous initial data, reproduced in Figure 4.1,

UQ(S) =
0 for s < 0.
s for s > 0.

relations (4.4) indicate that the solution of Burgers' problem (4.2) is given by

x = s. u = Q for s < 0, t > 0,

x - s (1 + t), u = s for 5 > 0. t > 0.

Elimination of parameter s between these equations yields the solution u:

Jo fora: < 0, t > 0;

~ (x/(l + t) for x > 0, t > 0.

The corresponding characteristics are drawn in Figure 4.1.
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Second, for the discontinuous initial data shown in Figure 4.2,

fo f o r s<0 .
U Q ( S ) = <V } \\ f o r s > 0 ;

the solution is also determined from (4.4) and consists of three branches:

'0 f o r z < 0 , £ > 0 ,
u(x, t) = { x/t for 0 < x < t, t > 0,

1 for x > t, t > 0.

These expressions represent a continuous function u(x, t) in the semi-plane t > 0.
This continuous solution is called an expansion fan and the corresponding charac-
teristics are drawn in Figure 4.2. This situation is representative of a supersonic
expansion ramp. The important point to note here is that, due to the nonlinearity
of Burgers' equation, discontinuous initial data may generate a continuous solution.
This is, however, not always the case.

And third, in the case of decreasing initial data, even if continuously distributed, the
situation is in fact quite different. Characteristics eventually cross and a discontinuity
of the solution forms. Consider the following decreasing, and continuous, initial data:

1 for s < 0,
u0(s) = { 1 - s forO < s < I,

0 f o r s > l .

As can be seen from the characteristics in Figure 4.3, the solution is unique for
t < tc = 1, but not beyond tc. For t > 1 the solution is discontinuous because
signals from the left portion of the considered domain travel faster than those from
the right. This causes signals to pile up, thereby creating a discontinuity. This situation
is typical for a compression profile and the analogy with a supersonic compression
ramp should be noted.

In the more general case of the conservation law (4.1), it can be shown that if
UQ(SI) > wo(«2) with si < 82, the two characteristics x = s1 + UQ(SI)£ and
x = 82 + uo(s2)t intersect at time tc = [$2 — SI]/[UQ(SI) — u0(s2)]. Beyond
time tc a classical solution of the conservation law (4.1) no longer exists; however, a
generalized (or weak) solution (which is discontinuous) can be defined.

4.2.2 Weak solutions and entropy condition

Weak solutions were already introduced in Chapter 1, see Remark 1.7, for steady
problems. Here the same concept is extended to transient problems, in particular,
for equation (4.1). The objective is, as in Section 1.5.4, to weaken the continuity
requirements on the solution u(x, t). In this case, since we are confronted with a
first-order hyperbolic equation, the objective is to avoid differentiating u(x. t). Thus,
discontinuous solutions will be admissible. Denote by CQ (R x [0, oc[) the space of
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test functions w(x, t) that are continuously differentiable and with compact support in
the space-time domain E x [0, oo[. That is, w(x,t) =0 outside of some bounded set.
Multiplying the conservation law (4.1) by w(x. t), integrating over space and time,
and integrating by parts (using Green's formula), yields the integral relationship

rOO ,.00

/ / I w t ( x . t ) u(x.t) + wx(x.t) f ( u ( x , t ) ] \ dxdt
./o ./-ooL J

/

oo
w(x,Q)uo(x)dx. (4.5)

-oo

Note that boundary terms disappear because w(x. t) has compact support and thus
vanishes at infinity (only the initial condition remains). A function u(x. t) is called a
weak solution of the conservation law (4.1) provided it is measurable and the integral
relation (4.5) holds for all functions w e CQ (E x [0. oo[).

Note that equation (4.5) does not include derivatives of the unknown u, nor of
the flux function f ( u ) . Weak solutions are not necessarily unique in the sense that
different solutions can be obtained with the same initial condition. The physically
correct solution is the one that satisfies the so-called entropy condition, see for instance
Olemik (1957) for an in-depth analysis.

The correct solution can be determined by the vanishing viscosity approach. For
instance, the physically correct weak solution of the inviscid Burgers' equation (4.2)
corresponds to the solution of Burgers' equation when viscosity goes to zero. That
is, the inviscid case (4.2) is seen as a model of

with ue(x, 0) = U 0 ( X ) , valid only for very small e and smooth u6. In order to avoid
working with the viscous equation there are other conditions easier to check and that
will also allow us to determine the correct solution. They are called entropy conditions.
This is also the reason for calling the viscous solution the entropy solution.

In order to establish the generic form of the entropy condition, we consider the
conservation equation (4.1) with piecewise constant initial data with a single discon-
tinuity. This is known as the Riemann problem. As an example, let us take Burgers'
equation (4.2) with the following piecewise constant initial data:

, , j ut for s < 0.
UQ(S) = <

\ur for s > 0.

When ui > ur, the unique weak solution is given by

u(x,t} = \ (4.6)
^ ur for x > at

where
ui + ura = — - — (4.7)
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is the speed at which the discontinuity propagates. At each instant t > 0 the solution
has two constant states and, as illustrated in Figure 4.4, the characteristics penetrate
into the discontinuity from both regions. This kind of discontinuity is called a jump,
or a shock in application to gas dynamics, and is physically admissible. Note that the
smooth solution ue, namely

,, ^ i, . r, ,
ue(x, t) = ur + -(u, - wr) 1 - tanh

of Burgers' equation converges to (4.6) as e goes to zero. Therefore, this unique
solution is the desired vanishing viscosity solution.

Ifuj < ur there are infinitely many weak solutions. One of them is again (4.6), but
now, as indicated in Figure 4.5, the characteristics emanate from the discontinuity. It
can be shown that this solution is unstable in the sense that small perturbations of the
data produce large changes of the solution. Moreover, if a small amount of viscosity
is introduced in the equation the solution changes completely. Thus solution (4.6)
is not physically desirable. Among the other weak solutions, one that is stable to
perturbations is the rarefaction wave given by

HI . x < HI t
u(x, t) = ^ x/t, ui t < x < ur t

Ur. X > Urt.

This is in fact the vanishing viscosity solution to Burgers' equation, see Figure 4.6.
In order to generalize these concepts for a generic flux function / we need first to

define the propagation speed of the discontinuity, that is the Rankine—Hugoniot jump
condition, and second to establish if this discontinuity is physically acceptable using
the previous observation that shock should have characteristic lines going into and
not out of the discontinuity, as time advances.

Still in the context of the Riemann problem, that is piecewise constant data with a
single discontinuity, we want to obtain for a generic flux function / the propagation
speed of the discontinuity, namely the generalization of (4.7) which is also denoted as
a. We integrate equation (4.1) with respect to the spatial variable x from left, at— 1,
to right, at + 1, of the discontinuity. This yields

rat+l rat+1

I (ut(x,t) + fx(u))dx = Q => ut(x,t)dx = - f ( u r ) + f ( U l ) (4.8)
Jfft-i Jfft-i

for each t > 0. On the other hand, since data are piecewise constant we may write

J J f rat ffft-\-\ "1

0 = — (ui + ur) = — / u(x. t) dx + / u(x. t) dx
dt dt U<rt-l ' Jat \

= I ut(x.i)dx — a(ui — ur}.

4 Qv ;

where the left, w/ = u(at - 1.1), and right, u/ = u(at + 1.1), values of the solution
are used on each side of the discontinuity, x = at. Then, from (4.8) and (4.9) we
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jump

F/gf, 4.4 Physically acceptable (entropy-compliant) weak solution: shock wave.

Fig. 4.5 Unstable (entropy-violating) weak solution.

urt

Fig. 4.6 Entropy-compliant weak solution: rarefaction wave.

obtain the propagation speed of the discontinuity for a scalar problem and for any
flux function /,

f(Ui) - /(Mr)
a = (4.10)

As expected, the particularization to Burgers' equation recovers expression (4.7).
The previous analysis was carried out for the Riemann problem, that is for piece-

wise constant data. It can be generalized to more typical problems where the solution
to the left and right of the discontinuity is varying smoothly. In general relation (4.10)
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across any propagating shock where ui and ur denote the values immediately to the
left and right of the discontinuity is called the Rankine-Hugoniot jump condition.

Now that the speed of the discontinuity is defined we need to determine if the
discontinuity corresponding to the weak solution is physically acceptable (i.e., it
corresponds to the vanishing viscosity solution). Previous observations showed that
characteristics must penetrate the discontinuity as time advances in order to have
a physical solution. When the characteristics emanate from a discontinuity, small
perturbations of the initial data, or of the equation itself (for instance, adding a small
amount of viscosity), may result in a strong change of the solution (and typically
this will cause a rarefaction of characteristics). From this analysis, the first entropy
condition is derived:

o A discontinuity propagating with speed a given by (4.10) satisfies the entropy
condition if

, . df . . df . .
a(ui) = —(ui) > a > —(ur) = a(ur).au au

where the advection velocity is used, see Remark 3.4. For a convex flux function
/, the speed of the discontinuity a, namely the Rankine-Hugoniot condition, see
(4.10), must lie between a(w/) and a(wr). Thus, the previous condition simply
requires that a(w/) > a(wr), which, in view of the convexity of the flux function
/, amounts to imposing w/ > ur.

A more general statement for the entropy condition, which applies to non-convex flux
functions /, is:

o A discontinuity propagating with speed a given by (4.10) satisfies the entropy
condition if

f ( u ) - f ( u i ) f ( u ) - f(ur)
u — HI ~ ~ u — ur

for all u between «/ and ur.

4.2.3 Time and space discretization

Classical time integration methods, such as the 9 family of methods and the Taylor-
Galerkin schemes discussed in Chapter 3, can be applied in the solution of nonlinear
hyperbolic problems. Note, however, that implicit methods generate systems of
nonlinear equations and thus require iterative solution techniques. When the relevant
time scales of the problem are close enough to justify the use of explicit time-marching
schemes, this type of formulation should be favored. In fact, most explicit schemes
keep their simple algorithmic structure in application to nonlinear problems. Multi-
step explicit algorithms only involving first time derivatives are particularly suited,
as they do not require evaluation of the spatial derivatives of the flux function. To
illustrate the algorithmic simplicity of explicit methods, we shall consider the one-
step and two-step Taylor-Galerkin methods, but note that other explicit methods can
be implemented just as easily.
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4.2,3. 1 One-step Taylor—Galerkin method Consider the multidimensional
scalar conservation law

wt + V- / (w) = 0. (4.11)
Proceeding as in Section 3.6.2, we replace the first and second time derivatives in the
Taylor expansion with spatial derivatives using equation (4.1 1). This gives

ut = -V-f,

utt = -V>ft = -V- «t = V- (a(u)V./),

where the convection/advection velocity a(u} = df(u) /du is again used, see Remark
3 .4 or equation (3.2). The resulting second-order accurate time-stepping method reads

„ n+l _ ,n Ay.r + ~ v . («(«•>) v . r ) ,At
where as usual /n = f(un). A weighted residual formulation is obtained with the
usual procedure: multiply by a test function belonging to

V = {w(x) en1^} | w ; ( x ) = 0 f o r x e r g } ,

integrate over space, and use Green's formula to weaken the smoothness requirement
on the trial solution. The problem is then: find u G St , such that for all w € V,

where a Dirichlet inlet condition is assumed and the trial space is now

St := {u\u(-,t} € £ 2 ( f t ) ,*€ [0, T] and u(aM) = wi>for;e € Tin} .

Note that discontinuous solutions are admissible. Nevertheless, in finite element
practice continuous spatial approximations are usually chosen and shocks are modeled
via adaptive mesh refinement and smearing the discontinuity through the introduction
of artificial viscosity.

From a computational point of view at each step a system of algebraic equations
must be solved. The matrix is the mass matrix, which in an Eulerian formulation does
not vary with time and possesses nice properties for iterative solvers. The flux f ( u }
within an element is usually linearly interpolated in terms of its nodal values and the
advection velocity a(u] is evaluated at the element integration points.

A possible disadvantage of the one-step TG method in application to nonlinear
equations is the need to evaluate the second time derivative of the unknown in terms
of the flux and its derivatives. Though perfectly feasible for scalar equations (Burg-
ers), such evaluation becomes much more involved for systems of hyperbolic equa-
tions (Euler). Therefore, a two-step version of the method involving only first time
derivatives is generally preferred in the modeling of nonlinear systems. Moreover,
the divergence of the flux in the boundary integral of the previous weak form (last
term on the r.h.s.) is also avoided in the two-step TG method.
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4.2.3.2 Two-step Taylor-Galerkin method Consider now solving the mul-
tidimensional scalar conservation law (4.1 1) by means of the two-step time scheme

un+l/2 = un + At ̂  = un _ ̂  V , fn

Z* £

un+l =un + At un+l/2 = ̂ n _ Af v . jn+1/2

where fn = f(un) and /n+1/2 = /(un+1/2).
In weak form, the problem in the second integration step is defined as

_ 7/

(4.12)

Note that the integrals on the r.h.s. require the evaluation of the intermediate flux,
yrn+i/2 at the Gauss points only As a result, the two-step TG method is implemented
as follows:

Step 1: Compute at the integration points of the elements the intermediate value
un+i/2 of the unknown using

un+1/2 =un--&tV-f(un).
£*

The divergence of the flux within an element is evaluated using the so-called
group representation of the flux components (see Remark 4. 1 below):

Na(x) fia, i = \.... . nsd.
0=1

Once the intermediate value un+1/2 is obtained, the intermediate flux fn+l/2

at the considered element integration point is readily evaluated. Notice that
Step 1 only involves element-based computations and thus avoids completely
the need for the assembly of element contributions.

Step 2: It remains to compute the end-of-step values u n+1 by spatial discretization of
the weak form (4.12). This results in an algebraic system with a mass matrix.

Remark 4.1 (Flux representation). An issue in the finite element discretization
of nonlinear hyperbolic problems is the choice of a local approximation for the
nonlinear flux function:

o A first possible option consists of using an elementwise constant represen-
tation of the flux:

f ( u ) = f ( u ) ,

where u is a mean value of the unknown within the considered element.

o A second option is to interpolate first u at the desired point in the element
and then evaluate the flux:
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This is used in the one-step Lax—Wendroff method: the flux is evaluated at
the Gauss points once the value of the unknown u is interpolated.

o Finally, another possible choice is to interpolate the flux directly by means
of the same shape functions used for u:

a=l

This option is called group representation and is often used in Step 1 of
the two-step Lax-Wendroff method to compute the divergence of the flux
within an element. In this case, the group representation of the nonlinear
flux function presents computational advantages over the other interpolation
methods. It simplifies the evaluation of the flux divergence because the
spatial dependency of the flux function is described directly by the element
shape functions. Note also that on a uniform mesh of linear elements, the
group representation provides a fourth-order accurate representation of the
spatial derivative of the flux function (Donea and Giuliani, 1981).

To appraise the performance of the various flux representations, the reader is
referred to the solved exercises in Section 4.8.

4.3 THE EULER EQUATIONS

4.3.1 Strong form of the conservation equations

The Euler equations of gas dynamics considered here express conservation of mass,
momentum and energy in a compressible, inviscid and non-conducting fluid. They
were developed in Section 1.4 both in differential and integral form. Recall the strong
form of mass (1.11), momentum (1.16) and energy (1.21) conservation

dt
dpE
dt

+ V - ( p v ® v + pl) = pb (4.13)

+ V • ((pE + p]v] = v-pb

where the Cauchy stress a has been replaced by — p I because we assume an inviscid
fluid (constitutive law), and the rest of the variables were already defined in Chapter
1: the density p, the momentum pv, the total energy pE per unit volume of the fluid,
the fluid pressure p and the external volume force per unit volume pb. In vector form
and in 3D (nsd = 3), these equations can be rewritten as
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where U is the vector of conservation variables, Fj are the associated flux vectors for
each spatial dimension and B is a source term. They are defined as follows:

, i = l , . . . ,n s d , andB= pb .(4.15)

The previous differential equation can be compacted further using the divergence
of the flux vector

/FA
F = F2 ,

and finally, the Euler conservation equations, boundary conditions and initial condi-
tion induce the strong form of the problem:

[, (4.16a)

Fin-n = G onrx]0,T[, (4.16b)

U(x,0) = U0(aj) onHaU = 0. (4.16c)

In the previous chapter we have already seen that boundary conditions for scalar
hyperbolic problems are only imposed on the inflow portion of the boundary. For
systems of hyperbolic equations only inflow components of the flux vector can be
prescribed. This is discussed in detail in Section 4.3.4.

Boundary conditions for this problem will be discussed in detail in Section 4.3.4.
Before then, we need to define the equation of state to complete the previous system
of conservation equations. The equation of state relates the internal energy, e =
E — (l/2)||w||2, see Section 1.4.4, to pressure, p, and density, p. For an ideal gas,
internal energy is only a function of temperature. In fact, for a perfect polytropic gas
the internal energy per unit mass is proportional to Jemperature: e = c v T where cv is
constant and known as the specific heat at constant volume. Thus the state equation
relating stop and p is obtained using the ideal gas law

where R is the gas constant per unit mass, which is equal to the universal gas constant
K divided by the molecular mass of the fluid.

Other expressions of the equation of state are also common. For instance, for
a polytropic gas the total enthalpy of the fluid H = E + p/p is also proportional
to temperature: H = cp T where cp is constant and known as the specific heat at
constant pressure. The ratio 7 = cp/cv of the specific heat coefficients can relate the
specific heat constants and the gas constant per unit mass, H,

7 ^cn = R and cr =
-1 7-1
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With the help of this new constant 7 the usual form of the equation of state is obtained

"-rr + xIMI 2 (4.17a)

or in terms of the total enthalpy of the fluid

H = E+P = -r^~+1-\\v\f. (4.17b)
p p(7 - 1) 2

The speed of sound, c, is also common in this formulation. It enters in the definition
of the Mach number

c
and it is given by

Ffp
P

Thus using the state equations (4.17) the speed of sound can also be written as

c
2 = 7('v- inn;- -i iwir i or

Remark 4.2 (Non-conservative form). The Euler equations can be written in
various equivalent forms, depending on the choice of the dependent flow vari-
ables. For instance, use can be made of the primitive variables, p, v, p. In this
case, equations (4.13) and (4.16) transform to the following non-conservative
form, see for example Hirsch (1990, Chap. 16) for details:

Pt+v • Vp + p V • v = 0,

vt + (v- V}v + - Vp — 6,
P

Pt+v - Vp + p c2 V • v = 0,

where c is the speed of sound. It is important to note that the conservation form
of the Euler equations is preferred in order to correctly compute the propagation
speed and the intensity of flow discontinuities.

4.3.2 The quasi-linear form of the Euler equations

In order to investigate the basic properties of the Euler equations (see for instance
Hirsch, 1990) it is necessary to write these equations in a quasi-linear form. This is
similar in structure to the convection equations studied in Chapter 3. In the case of a
perfect polytropic gas or, more generally, for fluids satisfying the relation p = p f (e),
the components F i of the inviscid flux vector F, see (4.15), are homogeneous functions
of degree 1, see Remark 4.3, in the conservation variables U. Therefore, the flux
components can be written as

F i (U)=Ai(U)U, (4.18)
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where Ai(U) = dFj/dU, with i = 1,..., nsd, are the Jacobian matrices. Thus,
from (4.14), the quasi-linear form of the Euler equations is given by

—
ox i 0x2 ox

n= B,

or in compact form
(4.19)

Remark 4.3 (Homogeneous functions). Let / be a scalar function differen-
tiable in an open set 5 C Mn. / is a homogeneous function of degree p in S
if

f ( t x ) = tp f(x) V* > 0 and Vx e S.

Moreover, the so-called Euler theorem for homogeneous functions claims that
a homogeneous function of degree p verifies

p / (x)=x-V/(x) .

Remark 4.4 (Euler equations in 2D). In 2D, the vector U of conservative
variables and the associated flux vector F reduce to

U =

\PE)
+p and

\
+P

In 2D the Jacobian matrices for a polytropic ideal gas are

-1
2

-Vi

~2~

0

||v||2 -vl
-ViVz

|H|2 -viH

0
-ViVz

I l l l 2

1 0
(3 - j)vi (1 - 7)^2

U2 Vi

-v?(7-l) + # (l-7)vit;2
0 1

t;2 Vi
(1 - 7)ui (3 - 7)u2

0 \

0
7Vi /
0 \
0

7-1

Remark 4.5 (Euler equations in ID). In ID, the vector U of conservative
variables and the associated flux vector F reduce to

and

The corresponding Jacobian matrix A = d¥/dU takes the form

/ 0 1 0
A =

(7 - 1) r3 - 7 v E 7 E - |(7 - 1) r2



THE EULER EQUATIONS 163

4.3.3 Basic properties of the Euler equations

The Euler equations form a hyperbolic system in time and the solution of the homo-
geneous quasi-linear system (4.19),

Ui + (A • V)U = 0,

can be expressed in Fourier series. A typical term (mode) of the series has the wave-
like form

Here, k = (k\. . . . ,knad)
T is the wave-number vector and u represents (up to a factor

2?r) the frequency of the propagating wave. Note that (k • x — ut) represents the
phase of the wave propagating in the direction k with frequency uj. Introducing the
previous single mode solution into the homogeneous equation leads to the following
condition for the existence of a wave-like solution:

det (ul- A - k ) = 0 ,

where I is the identity matrix of order nsd. Thus, wave-like solutions will exist
if the eigenvalues Xj, j = 1, • . - , nsd + 2, of the projection matrix Ak = A • k
are real with linear independence of the corresponding right eigenvectors. These
eigenvalues represent the frequency uj. Let R be the matrix whose columns are the
right eigenvectors of Ak, that is

AkR = RA, (4.20)

where A := diag(A_/), j = I, . . . . nsd+ 2, is a diagonal matrix, such that the diagonal
elements are the eigenvalues Xj of Ak. These eigenvalues are associated with an
arbitrary direction of propagation k, A j (k), and can be evaluated in terms of the fluid
velocity v and the sound speed c as

A! = • • • = Ansd - v • k,

Ansd+i = v - k + c.

Ansd+2 = V - k - C.

Note that the characteristics associated with the eigenvalue v • k = Y^=i v^s of
multiplicity nsd represent the trajectories of the particles. Finally, we can consider
the decomposition of the projection Jacobian matrices along the direction of the
propagation k

It is important to note that this equation shows that a projection of the Jacobian
matrix A along an arbitrary direction is diagonalizable, not the Jacobian matrix itself.
This has a major consequence in the diagonalization of the Euler equations. In fact,
the Euler equations can no longer be diagonalized in 2D and 3D. This is because



164 COMPRESSIBLE FLOW PROBLEMS

x,t)

+ r0Pn P-

Fig. 4.7 Illustration of characteristics at point P(x,t) for supersonic (left) and subsonic
(right) flow conditions.

waves can travel in an infinite number of directions and the decomposition into scalar
waves is no longer unique. In one dimension, see Remark 4.5, we may multiply the
system (4.19) in quasi-linear form by matrix R"1 to obtain

Then, introducing the characteristic variables W = R 1U and under the assumption
that the coefficients of matrix R are constant, the previous equation becomes:

*t + AWX = (4.22)

Unfortunately, the characteristic variables can only be defined for the ID Euler equa-
tions and not for the more general case of multidimensional flows. The characteristic
variables, also called Riemann variables, are (for isentropic flows of a polytropic ideal
gas)

/ 2 2 \T

W = ( s . u H c.v c) . (4.23)
V' 7 - 1 ' 7 - 1 / '

where s is the entropy per unit mass of fluid, see Remark 4.6. The associated eigen-
values are

A = diag(v; v + c.v — c), (4.24)

and they define the three characteristics, see Figure 4.7:

dx
— =v on Co,
at
dx
—- = v + c on C+.
at
dx
—- = v — c on C-.
dt

(4.25)
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From (4.22) the ID homogeneous Euler equations are

d . , d \ / 2c

This allows us to observe that the material derivative of s is zero, that is the specific
entropy is constant along the particle trajectories in the smooth part of the flow (away
from discontinuities). In fact, the entropy s is transported at speed v along the straight
characteristic Co of equation dx/dt — v, which coincides with the particle path. The
quantities v ± 2c/(7 — 1) are transported at speed v ± c along the characteristic lines
C± illustrated in Figure 4.7.

It is important to note that, in contrast to the scalar case, the characteristics asso-
ciated with the Euler equations are not in general straight lines and do not transport
constant values of the unknowns. The above ID system is an exception, because
it is homogeneous (the r.h.s. is zero), and the diagonalization of the system induces
that each l.h.s. expresses the vanishing of the material derivative of the transported
quantity.

These properties, which are restricted to the ID problem, are useful for the speci-
fication of suitable boundary conditions in multiple dimensions. Moreover, informa-
tion on the sign of the eigenvalues A, which represent the propagation speeds, will be
exploited in Section 4.4.2 to derive directional (upwind-type) spatial discretization
models for the Euler equations.

Remark 4.6 (Entropy per unit mass). This is another fundamental thermo-
dynamic variable, which can be interpreted as a measure of the disorder in the
system. The entropy per unit mass, s, is defined from a reference state (up to a
constant) as

* - Sref = Cv In
(p/prf)-' • Jref Pref

4.3.4 Boundary conditions

The issue of deciding which boundary conditions to impose on the Euler equations
is not a trivial one; an inadequate choice can affect the existence and uniqueness of
solutions.

For instance, at a solid boundary, only the normal component of the velocity must
be specified equal to the solid velocity normal to the fluid-solid interface. Conse-
quently, in the case of a fixed solid boundary, the normal component v n of the fluid
velocity is set to zero. Moreover, in the absence of thermal conduction, the energy
flux across the boundary vanishes. The same applies to the flux of mass. Thus, nei-
ther the density p nor the total energy pE must be specified at a solid boundary. The
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conditions of zero normal flux for both mass and energy are automatically satisfied in
the finite element context, because of the natural boundary conditions on prescribed
normal fluxes.

In general, the computational domain is delimited by an external boundary. A
linearized Riemann analysis in the direction of the outward normal to the contour is
required to determine the speed of wave propagation. As indicated in the previous
section, the Euler equations can be diagonalized in ID; the outward normal to the
boundary is this dimension. Then, three distinct values of the propagation speed are
obtained from the linearization of the Euler equations, namely

AX = • • • = Angd = vn.

Ansd+i = vn + c, (4.26)

Ansd+2 = Vn - C.,

where vn = v • n is the velocity along the outward normal. Then, at each point of
the boundary of the computational domain one should prescribe as many conditions
as there are negative eigenvalues (incoming information) in (4.26).

Two distinct possibilities must be considered in the case of supersonic flow, that
is when the local Mach number is such that M = (\vn\/c) > 1.

1. Supersonic inflow boundaries, where vn < Oand|i>n| > c: for such boundaries
all components of vector U defined in (4.15) must be specified because all
eigenvalues (4.26) are negative.

2. Supersonic outflow boundaries where vn > Oandi>n > c: here, all eigenvalues
are positive and no component of vector U can be prescribed.

For subsonic boundaries, M = (\vn\/c) < 1, the situation is more complex and the
components of U that can be specified are those of the incoming Riemann variables.
Here we also distinguish two cases:

1. Subsonic inflow boundaries, where vn < 0 and \vn\ < c: only the eigenvalue
Ansd+i is not negative, and nsd+ 1 appropriate conditions can be imposed.

2. Subsonic outflow boundaries, where vn > 0 and vn < c: only one condition
(for instance, the pressure) can be prescribed in this case, because only the
eigenvalue Ansd+2 is negative.

4.4 SPATIAL DISCRETIZATION TECHNIQUES

Various options are available for the finite element spatial discretization of the Euler
equations. This comprises several possible choices for the weighted residual for-
mulation, as well as various options for the interpolation of the field variables. As
an alternative to the standard Galerkin formulation, formulations of upwind-type are
available which possess good stability properties and produce a directional discretiza-
tion in accordance with the physical behavior of inviscid flows. Finite element models
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of upwind type include stabilized formulations, such as SUPG and GLS, as well as
discontinuous Galerkin formulations combined with flux vector splitting or other de-
vices such as approximate Riemann solvers. We start by introducing the standard
(continuous) Galerkin formulation of the Euler equations, and then discuss ways of
producing more stable upwind-type discretizations.

4.4.1 Galerkin formulation

To perform the classical Galerkin spatial discretization of the Euler equations (4. 16)
we need to generalize the functional spaces defined in Section 3.4.2 for the scalar
case. For clarity of exposition we assume that no Dirichlet boundary conditions are
prescribed at the inflow boundaries, and as indicated by equation (4. 1 6b), the boundary
conditions are specified in terms of prescribed normal flux. The test functions, W,
belong to V := 9i1(il) (space of vector functions, see Section 1.5.1.2) and do not
depend on time, and the space of trial functions, S t, varies as a function of t

The Galerkin spatial discretization of the Euler equations (4. 16) can then be stated as
follows: for t € ]0, T[, find U(aj, t) e St such that U(x, 0) = U0(x) and

fwTUtdft- ( VWTF(U)dft = ( WTBdQ- [wTGdT
'JQ Ja JQ Jr

for all test functions W € V. In compact form, this equation reads

(W,Ut) - (VW,F) = (W,B) - (W,G)r. (4.27)

The conservation variables in vector U are approximated spatially within an element
using standard finite element shape functions:

pe = Nj p, (pv}e = ̂ vpv, (pE)e = NjE ^E,

where vectors p, pv and pE list the values of the conservation variables at their
respective nodal points and N denotes the associated shape functions. Note that each
conservation variable can be interpolated differently.

A common practice in compressible flow problems is to use low-order approxima-
tions. In fact, high-order polynomial approximations are not optimal in zones where
the solution presents steep gradients. Moreover, the polynomial approximation for
the density and the energy is often taken at one order less than for the momentum
components. Note, however, that, in contrast to the incompressible case discussed in
Chapter 6, this is not indispensable for compressible flows. For instance, when using
primitive variables a common choice is constant element-by-element approximations
for the density and the specific internal energy (and hence the pressure), and piecewise
linear/multilinear representations for the velocity.

As seen in Chapters 2 and 3, the Galerkin approach to the spatial discretization
of highly convective problems is often characterized by a lack of sufficient stability.
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This is also the case for the Euler system of hyperbolic equations. Finite element for-
mulations of the upwind type are therefore better adapted for the spatial discretization
of the Euler equations. Such formulations are presented in the next section.

4.4.2 Upwind-type discretizations

Centered spatial discretization techniques, such as the Galerkin finite element method,
do not account for the physical propagation properties of the solutions of the Euler
equations. That is, the propagation of perturbations along the characteristics is not
taken into account. For this reason, finite element formulations of upwind type are
generally preferred for the Euler equations. As already seen in Chapters 2 and 3
for scalar convection problems, spatial discretization schemes of streamline-upwind
type are able to produce directional discretizations in accordance with the physical
behavior of the solution of convective transport problems. In the case of the Euler
equations, the situation is more complex than in the scalar case, because there are
generally mixed sign eigenvalues in the coupled system of conservation equations.

Three basic classes of upwind-type methods have been developed to produce a
directional spatial discretization of the Euler equations in accordance with the phys-
ical behavior of inviscid compressible flows. Note, however, that standard upwind
schemes are only first-order accurate in space and therefore generally too dissipa-
tive. They have to be corrected in the form of high-resolution methods to achieve, as
indicated in Section 4.5.3, higher-order accuracy away from discontinuities.

A first family of upwind schemes is inspired by Godunov's (1959) method which
solves the locally ID Euler equations for discontinuous neighboring states (the Rie-
mann problem in Figure 4.4). This approach introduces in the discretization scheme
information from the exact local solution of the nonlinear Euler equations. It has gen-
erated many variants which are based on approximate Riemann solvers. A popular
method in this class is Roe's (1981) approximate Riemann solver in which a constant
coefficient linear system of conservation laws is considered instead of the original
nonlinear system. The reader interested in an in-depth discussion of approximate Rie-
mann solvers is urged to consult specialized textbooks, such as, for instance, Hirsch
(1990) and LeVeque (1992).

A second family of upwind-type methods are the so-called flux vector splitting
methods introduced in the finite difference context by Steger and Warming (1981)
and van Leer (1982). These methods use information on the sign of the eigenvalues
of the Jacobian matrices to split the flux terms in the Euler equations and discretize
them directionally according to the sign of the associated propagation speeds. We
shall describe the flux vector splitting technique in the next section and then illustrate
its use in conjunction with the discontinuous Galerkin method.

A third family of upwind-type finite element methods for the Euler equations
includes the SUPG and GLS methods introduced in Chapter 2. Sections 4.4.2.3 and
4.4.2.4 provide an introduction to such stabilization methods in the context of the
Euler equations.
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4,4.2.1 Flux vector splitting technique The rationale of flux vector splitting
techniques is presented for a ID problem, and then extended to multidimensional
situations. The Euler equations have in general positive and negative eigenvalues,
which correspond to the inflow and outflow components. To produce an upwind-type
discretization, the idea is to decompose the flux vector F into the sum

such that <9F+/<9U has only positive eigenvalues and dF~~ /d\J has only negative
eigenvalues. Hence, the spatial terms in a ID problem

can be discretized directionally according to the sign of the eigenvalues by expressions
such as

andand "O V I / 7 w«.w ~ \w^ 1 • ~ .

C73? /I (JX h

The splitting of the flux vector is defined using (4.18), that is F = A U, as

Therefore we need to split the Jacobian matrix A into A = A+ + A~. To define these
matrices we recall the diagonalization of the ID projection of the Jacobian matrix A,
see Section 4.3.3 and equation (4.21), that is A = RAR ~1, where, for the ID Euler
equations, A is defined in (4.24) and R is the matrix whose columns are the right
eigenvectors of A, see (4.20). The splitting of the Jacobian matrix becomes obvious
from the splitting of the diagonal matrix of eigenvalues A, that is

A = A+ + A~ induces: A+ = RA+ R"1, and A~ = RA~ R~\

where A+ and A~ have the positive and negative eigenvalues, respectively,

2 ' 2 ' 2
.' (v — c) — \v — c\ v — \v\ (v + c} — \v + c\ ̂

A = diag f

Remark 4.7. In this ID case, each of the three characteristic variables (4.23)
can be integrated separately, and a scalar upwind scheme can then be used for
each one:

7.n+l . n
Ui ~ Ui _

with a+ — max(0,a) = (a + |a|)/2, a = min(a,0) = (a — |a|)/2, and
where it suffices to replace the convection speeds a+ and a~ with the positive
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and negative projections of the eigenvalues defined in (4.28). Note that w in the
previous equation must be replaced by the Riemann variables.

This final decomposition allows us to compute A+ and A~ and consequently F4"
and F~. Then, as noted previously, the numerical scheme can account for inflow or
outflow fluxes. This, however, is only valid for a ID problem. The generalization to
higher spatial dimension is not trivial. As seen in Section 4.3.3 the Euler equations
cannot be diagonalized in 2D or 3D. Consequently, in higher dimensions the ID
concept is used restricting the splitting of the flux to the normal direction. The
normal flux to an element side (face in 3D) with outward normal n is

Consequently, the upwind characterization leading to the splitting of the normal flux
is based on the signs of the eigenvalues of the projected Jacobian matrix

An(U) = ̂ ^ = |;Aj(U)ni = (A.n).

The normal flux Fn(U) can then be split, see for instance Figure 4.8, into inflow and
outflow components F~ and F+, respectively, which are defined by

F±(U) = Aj U = (R A± R-1) U, with A* = i(A± |A|).
2

The splittings F^ are known in closed form for several flux vector splittings, see
Hirsch (1990, Chap. 20) for specific cases. In the next section, we show how flux
vector splitting techniques ideally combine with the discontinuous Galerkin method
for the upwind discretization of the Euler equations. Examples of applications of the
flux vector splitting technique in the finite element context are described in Section
4.8.2.

4.4.2.2 Discontinuous Galerkin method with flux vector splitting The
solution of the Euler equations is often characterized by discontinuities. An alternative
to the classical Galerkin method (continuous in space) is a finite element method where
the approximation Uh and the fluxes F(Uhl) are allowed to be discontinuous across
element boundaries. The discontinuous Galerkin method was introduced in Section
3.9. Here we follow the seminal work of Baumann and Oden (2000).

The discontinuous Galerkin method is globally conservative and also elementwise
conservative (i.e., the conservation equations are approximately satisfied at the el-
ement level) if a conservative formulation is employed, see (4.16). Moreover, the
method involves a weak imposition of the Rankine–Hugoniot jump conditions across
inter-element and domain boundaries. Thus, in principle, one could easily capture
shocks (discontinuities) with such a method. This requires, however, adaptive remesh-
ing in order to align element boundaries and discontinuities.
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U+

Fig. 4.8 Schematic representation of discontinuous Galerkin with flux vector splitting.

For clarity of exposition we drop the superscript h that denotes the approximation
to the solution. Thus, in this section, U represents the finite element approximation
to the conservative variables. The functional spaces needed for the resolution of the
Euler equations with the discontinuous Galerkin method are the vector analogues,
V(Th) and St(T

h), of the broken spaces introduced in Section 3.9, namely

V(Th) = {W 6 VQe

st(T
h) = {u [o,r] vfte e

Note that a partition Tft of the domain fi is also required.
As shown in Figure 4.8, the approximation of the conservation variables in the

state vector U is discontinuous across inter-element boundaries. To deal with dis-
continuous approximations, it is useful to employ the following notation:

U± = lim U(x± en)
6-+0 +

where a; is a point on the boundary and n the outward normal. Likewise, as indicated
in Figure 4.9, the normal flux F n (U) at any point on a boundary with outward normal
n is split into an inflow component F~ and an outflow component F+

 n. With this
notation, F+ (U~ ) represents the flux of mass, momentum and energy in the direction
n, while F~ (U+) is the flux in the opposite direction. Using this notation, the influx
boundary condition of the Euler problem, (4. 16b), can be rewritten as

F-(U~) = G onrx]0,T[.

The space discretization of Euler equations is based on the following weak formu-
lation: given U0(x) and the normal flux G(x. t) on F, find U(x. t} € St(T

h), such
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Fig. 4.9 Fluxes at interface between contiguous elements.

that for all weighting functions W £ V(Tft) and every element

(W,Ut)n. - (VW,F(U))n. + (W,Fje(U~))9ne

e/r = (W,B)n. - (W,G)9fie nr.,

where

For each flux vector splitting a closed form of F* is known, see Hirsch (1990, Chap.
20) for specific cases. The first two terms on the l.h.s. of the previous equation and
those on the r.h.s. have the same structure as in a standard Galerkin formulation. The
last two terms on the l.h.s. represent a jump condition. The jump condition enforces
a weak continuity of the normal flux across the inter-element boundaries.

Explicit time-stepping algorithms are very convenient for the time discretization
of the semi-discrete equations resulting from the discontinuous Galerkin method.
Baumann and Oden (2000) suggest using a discontinuous space-time discretization
of the Euler equations with piecewise constant approximation in time. Space-time
methods of this type were discussed in Section 3.10 of Chapter 3.

Remark 4.8. The discontinuous Galerkin method makes it very easy to use
different spatial approximations in adjacent elements to maximize the accu-
racy. Note, however, that only low-order approximations (piecewise linear or
piecewise constant) should be used near sharp solution gradients. A good res-
olution of discontinuities can only be obtained through the use of a locally fine
enough mesh of low-order elements and, as shown in the worked examples of
Section 4.8, through the injection of a suitable amount of artificial viscosity.
Higher-order polynomial approximations can be used in the smooth part of the
flow to maximize the accuracy.

4.4.2.3 Extension of the SUPG stabilization technique Hughes and co-
workers (see Hughes, Tezduyar and Brooks, 1982; Hughes and Tezduyar. 1984)



SPATIAL DISCRETIZATION TECHNIQUES 173

present the first attempts to extend SUPG methods, see Section 2.4.1, to systems
of nonlinear hyperbolic conservation laws. A breakthrough in the formulation of
stabilized finite element methods for compressible flow problems came with the idea
of working with symmetrized conservation laws (Hughes, Franca and Mallet, 1987).
The symmetrization is accomplished by a change of variables leading to the formu-
lation of the Euler equations in the entropy variables described in Section 4.3.2.

For practical reasons, however, it is desirable to develop stabilized finite element
methods for the Euler equations which instead of entropy variables employ conserva-
tion variables. With this choice, the state equations for general gas laws are simpler to
establish, the numerical implementation is easier, and a closer similarity exists with
traditional finite element formulations. Hansbo (1993) was the first to introduce a
formulation of the SUPG method for the Euler equations expressed in conservation
variables. Let us briefly illustrate the derivation of the SUPG formulation of the Euler
equations and underline the difficulty of constructing the stabilization matrix which
plays the role of the stabilization parameter in the scalar convection-diffusion case
discussed in Chapter 2.

Consider the initial boundary value problem associated with the Euler equations
(4. 16). Generalizing the formulation given in Section 2.4.1 of Chapter 2, the SUPG
method for the Euler equations consists of adding to the Galerkin variational formula-
tion, see (4.27), an element-by-element contribution depending on the local residual
of equation (4.16a). This results in the following problem: for t € ]0,jT[, find
U(x, t) € St for all W € V, such that U(x , 0) = U0(x) and

(W,U4) - (VW,F) +£((A- V)W,rtt(U))n6 = (W,B) - (W,G)r

e

where IR(U) = Ut + V • F — B is the local residual of the governing equation.
Note that in complete analogy with the scalar convection-diffusion case discussed
in Chapter 2, the present stabilized formulation results from the introduction of a
stabilizing term governed by the matrix r. Since

we note that the stabilization term includes the integral

((A.V)W,r(A.V)U)Q e ,

which is responsible for adding diffusion along the characteristic directions, provided
the matrix r is properly designed.

The structure of the stabilization matrix r is therefore essential in SUPG methods
for compressible flow problems. Only in simple cases, such as 1D systems and/or sys-
tems amenable to diagonal form, can one find optimal definitions of the coefficients
of matrix r. An appropriate stabilization matrix r should be symmetric, positive
definite, have dimensions of time, and scale linearly with the element size (no stabi-
lization is needed for a fine enough mesh). In multiple dimensions, matrix T should
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be designed to introduce numerical dissipation along the characteristic directions
only and not transversely. Its construction is, in general, not a trivial task, because
the Jacobian matrices AJ, i = 1, . . . , nsd, are not simultaneously diagonalizable in
multidimensional Euler equations.

In 1D, the system of Euler equations can be diagonalized as explained in Section
4.3.3. Then, the scalar stabilization parameter T, see Section 2.4.3, can be used for
each individual equation. In pure convection, r = /i/(2a), see both (2.64) and (2.65).
For Euler equations in 1D this definition can be generalized, producing a stabilization
matrix T, if we recall the diagonalization of A = RAR - 1 , see Section 4.3.3, and
basic algebra definitions, such as Ap = RAP R-1 and |A| = R |A| R"1,

We have assumed that all the eigenvalues, see (4.24), are non-zero. If there is any zero
eigenvalue it is suppressed, as well as its corresponding eigenvector. This produces
a formula similar to the previous one, namely

where A only includes the non-zero eigenvalues and R their corresponding right
eigenvectors.

Such a definition of r induces, in general, a non-symmetric positive definite matrix
(A is non-symmetric). Hughes and Mallet ( 1986a) generalize the previous expression
to multidimensional situations in the framework of a symmetric system of equations,

h
T =

nsd i

^A2Y~2
2\2^AJ) •

j=l

Furthermore, they extend it to non-regular meshes using

/iT^-^oN"1/2 ™ #£j .
r = ( > B;j , where B, = > --^ A*

\*-^ 3) *-** dxi
j=l j=l

takes into account the parametric mapping x = x(£) between the actual coordinates,
x, and the normalized local coordinates, £ = (£1,..., fnsd)T- In practice, the sta-
bilization matrix, r, is assumed constant in each individual element. If there is any
zero eigenvalue the same procedure as before is applied.

Finally, Soulaimani and Fortin (1994) show that the previous expression is also
valid for non-symmetric Euler formulations such as the conservation form used in
this chapter and employ the equivalence between norms to produce a simpler formula

j=i

In practice, it is possible to obtain an algebraic expression for T 1 to avoid the solution
of an eigenvalue problem, see the cited references.
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4.4.2.4 Stabilized space—time formulation Here we illustrate the use of
stabilized formulations in the context of a space-time formulation. As in Section 3.10,
to which we refer for the notation, we consider piecewise continuous approximations
in space and discontinuous approximations in time. Accordingly, we introduce space-
time slabs Qn = fi x /n, where Jn = }tn, tn+1[, and space-time element domains
Q™ = fie x Jn, e = 1,.... nei. The finite element space for the trial and weighting
functions is then defined as follows:

nst-l

n=0

It is the vector analogue of (3.62) with no Dirichlet boundary conditions.
With reference to the Euler equations in conservative variables, system (4.16),

the GLS method can now be formulated as follows: for n = 0.1..... n st — 1. find
Uh € 5j such that for all W G 5^

f f / i >/ / fW
JJo.^ '

V)Wft)Tr(U? 4- V • Fh - Bh) dtldt

Jn +

if
J J Q*

where Vh(t^_) = UQ. The last integral in this equation imposes a weakly enforced
continuity condition across the slab interfaces at in, see Section 3.10, and it is the
mechanism by which information is propagated from one slab to another.

For instance, in the case of a (discontinuous) piecewise constant approximation
in time, all time derivatives in the previous equation vanish, the GLS formulation
coincides with SUPG, and an implicit approximation over the time interval A£ =
tn+i _ tn is

A* f (Wh)T((A • V)U^+1 - Bj+1) dttdt
Jn

((A • V)Wh)Tr((A • V)U£+1 - B*+1) <Kldt

In deriving this expression we have used the quasi-linear form (4.19) of the Euler
equations to replace the divergence of the flux, V • F h = (A • V)Uft. The following
convention has been used: U*+1 = Uh(tn+1) := U h ( t ) f o T t e ]tn.tn+l[. If the
values at tn are known, the only unknown in the previous equation is U£+1. An
implicit scheme is thus obtained that is reminiscent of the first-order backward Euler
method.
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4.4.2.5 Residual decomposition technique Alternative ways of extending
the SUPG formulation to the Euler equations have been suggested using the so-called
multidimensional residual decomposition technique. This technique was originated
by Roe and Deconinck and their co-workers and a detailed account of it may, for
instance, be found in the thesis of Carette (1997) and the references therein. The
main idea consists of decomposing the elementwise residual of the system of Euler
equations into a set of scalar components which can be treated separately with sta-
bilized convection schemes. This formulation allows a natural equation-by-equation
definition of the stabilization parameter.

In ID, the Euler equations can be diagonalized and, as seen in Section 4.3.3, they
can be decomposed into three scalar convection equations associated with the char-
acteristics defined in (4.25). In 2D and 3D, the Euler equations can no longer be
diagonalized. Waves can travel in an infinite number of directions and the decompo-
sition of the flux divergence into scalar waves is no longer unique. However, in the
framework of the multidimensional residual decomposition approach, several tech-
niques have been developed to decompose the system of Euler equations into scalar
contributions just as in the 1D case. The basic ingredient of the method is an approxi-
mate diagonalization along the lines suggested by Roe (1986) and Deconinck, Hirsch
and Peuteman (1986) in their characteristic-based approach. Various techniques are
actually available to decompose the multidimensional Euler equations into a set of
scalar convection equations. They are described in detail in the theses of Paill ere
(1995) and Carette (1997) and the references therein to the original works of Roe,
Deconinck, Hirsch, and their collaborators.

4.5 NUMERICAL TREATMENT OF SHOCKS

4.5.1 Introduction

One of the most striking features of compressible fluid flow is the presence of shock
waves. A shock wave is produced in a fluid when a succession of compression waves,
each propagating faster than its predecessor, pile up, determining an abrupt transition
of the field variables.

In the solution of inviscid compressible equations, shocks are seen as discontinu-
ities of the solution, that is surfaces across which the fluid variables are discontinuous.
In nature, shocks have a finite thickness, usually very small, associated with the mean
free path of the particles of the fluid. Shock waves produce entropy; thus over the
thickness of the shock the kinetic energy of the short wavelengths is transferred into
internal energy.

From a mathematical point of view, the Rankine—Hugoniot jump conditions, which
relate fluid variables across the shock, guarantee the solution of the inviscid equations
in the case of a shock discontinuity. However, the numerical computation of shock
flows via a direct application of the Rankine—Hugoniot jump conditions would simply
be prohibitive. Fortunately, it can be shown that, provided appropriate conservative
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discretization schemes are employed, the Rankine-Hugoniot jump conditions are
satisfied by numerical solutions.

The key idea for the numerical treatment of shocks and other flow discontinuities
is the introduction into the considered conservation law equation of an artificial (nu-
merical) viscosity term. This term has the effect of broadening the thickness of a
shock over a few elements in the mesh, thereby smearing the discontinuity and re-
moving spurious oscillations at its front. Discontinuity surfaces are thus replaced by
thin transition layers over which the flow variables (density, pressure, velocity) vary
rapidly, but continuously. Provided the structure of the artificial dissipation terms
is correctly chosen, the Rankine—Hugoniot conditions are satisfied without degrad-
ing the results over the remainder of the flow field. Recall the concept of vanishing
viscosity solution introduced in Section 4.2.2.

There are several ways of introducing terms representing an added dissipation
in the numerical schemes resulting from the finite element method. In Chapter 2
added numerical diffusion was already introduced in the context of stabilization of
convection-dominated problems. Among early shock-capturing techniques for the
Euler equations, mention must be made of the method of pseudo-viscous pressure
due to von Neumann and Richtmyer (1950). This method is discussed in Section 4.5.2,
together with another early method for treating shocks due to Lapidus (1967). These
early methods introduce free parameters whose calibration is not trivial, because they
must introduce just enough numerical viscosity to preserve monotonicity without
spreading shocks over too many grid points.

Higher-order shock-capturing schemes have been developed for the approximation
of nonlinear hyperbolic conservation laws. They produce non-oscillatory discontinu-
ities by a different approach than explicitly adding an artificial viscosity term to the
considered hyperbolic conservation law. The damping mechanism is implicitly intro-
duced by choosing an appropriate form of the discrete equations. Here, mention must
be made, among others, of the works of van Leer (1974), Harten (1983), Roe (1984),
Sweby (1984) and Woodward and Colella (1984). These modern schemes, called
high-resolution schemes, were briefly introduced in Section 3.7 and are further dis-
cussed in Section 4.5.3. They are based on conditions less severe than monotonicity
and have the following properties:

o They are at least of second-order accuracy in smooth parts of the flow.

o They sharply resolve discontinuities without generating spurious oscillations and
can be modified to produce solutions satisfying the entropy condition.

o They do not need explicit artificial viscosity such as in the pseudo-viscous pressure
method; damping is implicitly included in the form of the discrete equations through
the definition of appropriate flux functions incorporating an upwind effect.

We close the discussion of shock-capturing techniques by mentioning in Section
4.5.3.3 that locally monotone solutions can also be obtained by a suitable choice of
the stabilization matrix in the SUPG and GLS methods.



1 78 COMPRESSIBLE FLOW PROBLEMS

4.5.2 Early artificial diffusion methods

Early methods for the numerical treatment of shocks and other flow discontinuities
consisted of introducing a suitable amount of artificial diffusion near sharp solution
gradients. Among the various artificial diffusion methods proposed to produce a local
smoothing of the solution to the Euler equations, we have selected the widely used
method of pseudo-viscous pressure and the Lapidus viscosity.

4.5.2. 1 Method of pseudo-viscous pressure The treatment of shocks by
the method of pseudo- viscous pressure due to von Neumann and Richtmyer (1950)
consists of rewriting the equations in Section 4.3.1 of conservation of momentum and
total energy in the form

= pb

where p is the fluid static pressure and the scalar q added to the fluid pressure is called
pseudo-viscous pressure. This additional term is defined below and represents the
dissipative mechanism. Its value should be negligible everywhere in the flow domain,
except in the vicinity of a shock.

Since dissipation is being introduced for purely numerical reasons, the pseudo-
viscous pressure q can be defined through any appropriate function of p, p, v, etc.,
and their derivatives. Nevertheless, the following conditions must be satisfied by any
artificial viscosity technique:

1 . The conservation equations must have solutions free of discontinuities (i.e., the
conservation variables must be continuous across the shock).

2. The shock thickness must be of the order of magnitude of the mesh size h.
3. The effect of the terms containing q must be negligible outside the shocks.
4. The Rankine—Hugoniot jump conditions must be verified when the dimensions

characterizing the flow are large compared with the shock thickness.

von Neumann and Richtmyer (1950) show that in 2D the choice

_ I CQ p Ae (V - v)2 i f V - v < 0 ,
9~\Q i f V - v > 0 :

allows all the above conditions to be satisfied. In this expression Ae is the element
area and CQ a dimensionless constant (close to unity). The constant CQ controls the
spread of the shock and it is determined empirically. Note from the previous definition
that the dissipation mechanism introduced by q is a nonlinear viscosity.

Frequently, and in particular for modeling liquids, a so-called linear pseudo-
viscosity is required as suggested by Wilkins (1969). It is added to the previous
definition of q,

_ (cLcpAl/2\V-v\ i f V - v < 0 ,
qL ~ 1 0 if V • v > 0.
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This linear pseudo-viscosity is added to the previously defined nonlinear pseudo-
viscosity to reduce spurious oscillations; CL must be small to avoid excessive diffusion
of the shock wave front. A value of CL of the order of 0.05 is standard.

The implementation of the pseudo-viscous pressure in the framework of the finite
element method is simple. The pseudo-viscous pressure q is added to the static fluid
pressure p in the discrete form of the momentum and energy equations.

4.5.2.2 Lapidus viscosity Another widely used artificial viscosity method to
capture shocks was proposed by Lapidus (1967) for finite difference context. In 1D,
the added viscosity normally acts as a diffusion operator

where CLap is a user-specified coefficient, which normally varies between 0.0 and
2.0. In order to extend this concept to multiple dimensions Lohner, Morgan and
Peraire (1985) and Peraire (1986) constructed a local coordinate system oriented in
the direction of l, the unit vector in the direction of maximum change in the absolute
value of the velocity \\v\\, that is

or VIHI

Then, with the added viscosity

^Lap = CLap h
2 ^ = CLap k2\l -V(vt)l

one can finally define the added diffusion term used to smooth the velocities

This artificial diffusion method has the essential features required in these techniques.
The sensing function, which here is \t • V ( v • €) \ , induces a zero added viscosity when
velocity is smooth. It is invariant under coordinate rotation; thus it is independent of
the mesh orientation. It does not smear shear layers (contact discontinuities) because
velocity is continuous across them and neither boundary layers because v and t are
orthogonal in these regions.

To limit the addition of artificial viscosity close to zones of sharp gradients, other
sensors can be employed which are activated, for instance, by the variation of the
pressure gradient (see the exercises in Section 4.8). Moreover, instead of explicitly
adding artificial viscosity terms, a damping mechanism may be introduced implicitly
by choosing an appropriate form of the discrete equations. This leads to so-called
high-resolution schemes, some of which are illustrated in the next section.
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4.5.3 High-resolution methods

As already mentioned, monotone schemes are generally too dissipative and cannot
produce accurate solutions for complex flow problems. Higher-order shock-capturing
schemes are introduced for the purpose of adding minimal numerical dissipation and
to give non-oscillatory solutions in the presence of steep solution gradients.

As explained in Section 3.7, the basic idea underlying high-order shock-capturing
methods is to produce a high-order method in the smooth part of the flow and to
modify it by adding numerical dissipation only in the neighborhood of a discontinuity.
Modern methods use high-order TVD schemes which introduce a controlled amount
of nonlinear dissipation to give non-oscillatory shocks and ensure convergence to the
entropy solution. The term nonlinear dissipation means that the diffusion coefficient
depends on the local behavior of the solution. Thus, diffusion should be larger near
discontinuities than in smooth regions of the flow.

The guiding idea behind the design of TVD schemes for inviscid flow problems is
that physical solutions to the scalar hyperbolic equations do not allow the appearance
of any new extremum in the evolution of the flow variables. In a TVD scheme, the
total variation of the numerical solution is controlled in a nonlinear way, such as to
prevent the appearance of any new extremum. High-resolution TVD schemes in the
finite difference context have been developed by van Leer (1974), Harten (1983), Roe
(1984), Sweby (1984) and Yee (1987). A detailed account of the theory underlying
modern shock-capturing schemes can be found in the textbooks by Hirsch (1990),
LeVeque (1992), Quarteroni and Valli (1994) and Morton (1996). Note that the
adaptation of TVD schemes for use in connection with finite elements is still an area
of active development, see Donea et al. (1988) for an early application.

The critical issue in the design of high-order TVD schemes is to introduce enough
dissipation to preserve monotonicity without affecting the level of accuracy away from
the flow discontinuities. To this end, most schemes incorporate a mechanism which
automatically controls the amount of added numerical dissipation. Such mechanisms
are often in the form of limiters which impose constraints on the gradient of the
considered dependent variable (slope limiters) or on the flux function (flux limiters).
Some of the approaches to obtain a better resolution of flow discontinuities are briefly
presented in the next paragraphs.

4.5.3.1 Flux-limiter method Boris and Book (1997) and van Leer (1974) intro-
duced high-resolution schemes using nonlinear flux limiters. They generally require
a first-order upwind scheme and an anti-diffusion mechanism. The latter compen-
sates the large amount of diffusion introduced by the first-order scheme and thus
induces sharper resolution of discontinuities. Moreover, high accuracy in the smooth
parts of the flow and desirable properties, in particular satisfaction of the entropy
condition, are preserved. Such schemes satisfy the basic requirements of a good
convection scheme: they are TVD, conservative and less diffusive than the simple
upwind schemes.

We illustrate this concept of flux limiter on a 1D scalar convection equation:

ut + fx = 0. with f = au.
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The forward Euler time discretization of this equation can be expressed at node i in
terms of the convective flux as

,.n+l _ n _ _ f / n _ fn \
Ui — MJ -j£~(Ji+i/2 Ji-1/2)-

In the case of a centered (second-order) approximation of the flux term, one has

*1 _ * / f n , fn \
2 - oV/ i + /t+lj 'J cent ^

These approximations give rise to instabilities. But, a first-order upwind approxima-
tion based upon

/m/ 2 u p

generally introduces an excessive numerical diffusion. Then, an optimal strategy
consists in using the second-order numerical flux in smooth regions of the flow, and
the monotonic upwind method in the vicinity of discontinuities. This procedure is
best implemented by introducing limiter schemes based on the local gradient of the
solution u (slope limiters), or of the flux function / (flux limiters). In practice, a
flux-limiter method uses a flux function of the form

,. =/
hm

where

+i/2' up cent up

0.

The term in equation (4.29) depending on the function <&(r) is called anti-diffusive
flux. It compensates the high numerical diffusion introduced by the upwind approxi-
mation. For stability, flux-limiter schemes must be TVD. This imposes the following
restrictions on the function $(r):

$(r)
0 < -U. < 2 and 0 < $(r) < 2-

r

Note, however, that the function <fr(r) is normally selected so that 0 < $(r) < 1.
Two classical examples are the superbee limiter of Roe (1985) for which

$(r) = max(0, min(l,2r), min(2,r)),

and the limiter suggested by van Leer (1974):
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4.5.3.2 Practical implementation of high-resolution schemes As an ex-
ample of the previous discussion, we describe a method (see Donea et al., 1988), which
introduces a locally controlled dissipation, in the two-step Taylor—Galerkin method
(TG2). This locally controlled dissipation induces a non-oscillatory scheme for the
representation of shocks. In complete analogy with the idea behind the flux-limiter
method discussed in the previous section, the proposed modification combines the
good resolution offered by a second-order time scheme in the regular part of the flow
and the capability to damp out the non-physical oscillations in the vicinity of flow
discontinuities.

Suppose we want to apply the two-step TG2 method, see Section 4.2.3.2, to the
Euler equations, (4.16a). After Galerkin spatial discretization of the second step, the
following algebraic system is obtained:

M(Un+1 - Un) = A£rn+1/2 (4.30)

where the mass matrix M has dimensions neq x (nsd + 2) and vector rn+1/2 accounts
for the mid-step value of the non-inertia terms, see (4.12). Note that, in (4.30), M
could, in principle, be replaced by the diagonal matrix M L obtained by row sum; a
second-order scheme would also be obtained but, as seen in 3.5.2, with poor phase
properties.

To reduce the second-order scheme (TG2) to first-order near shocks, we replace
the consistent mass matrix M acting on Un+1 with the diagonal matrix ML. This
substitution produces the first-order accurate scheme

MLUn+1 = MUn + Airn+1/2,

which can be rewritten as

MLUn+1 = MLUn + (M - ML)Un + Atrn+1/2. (4.31)

Remark 4.9. The second term on the r.h.s. of (4.3 1), which contains the differ-
ence between the consistent mass matrix and its diagonal counterpart, represents
an added dissipation. For instance, the scalar ID linear convection equation
scheme associated with (4.31) delivers the following discrete equation at an
interior node j:

where C is the Courant number. This discrete equation is clearly of the Lax-
Wendroff type with an added dissipative term. It is stable for \C\ < \/2/3 and
monotone over this interval, as shown by Harten, Hyman and Lax (1976).

In order to modulate the added dissipation and thereby better mimic the flux-limiter
method, in the sense of equation (4.29), we introduce a parameter d in the diffusion
term of the first-order scheme (4.31). That is,

MLUn+1 = MLUn + d(M - ML)Un + Af rn+1/2. (4.32)
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Note the conceptual relation between d and the anti-diffusive flux: d = 1 - $. A
second-order scheme is obtained for d = 0 and a first-order method with maximum
dissipative effect is obtained when d = 1.

Furthermore, in order to separate the effect of convective transport from that asso-
ciated with the added dissipation (and to recover the benefits of the consistent mass
matrix), it is appropriate to implement the first-order scheme (4.32) according to the
following two-stage procedure:

M(U* - Un) = Atrn+l/2, (4.33a)

ML(Un+1 - U*) = d(M - ML)U*. (4.33b)

The first stage, (4,33a), corresponds to the second-order Taylor-Galerkin scheme
(4.30) and is characterized by the same (complex) amplification factor. The second
stage, (4.33b), only introduces a multiplicative coefficient into the amplification fac-
tor of the first stage. The advantage of the two-stage procedure is to preserve the
second-order phase accuracy of the TG2 method in the smooth part of the flow, while
facilitating the introduction of a modulated dissipation around shocks.

The dissipative term on the r.h.s. of (4.33b) must be further modified in order to
produce a local modulation of the added numerical dissipation. This is achieved by
replacing the global parameter d with a local parameter defined in terms of a sensor
which recognizes the discontinuities in the flow. At a given finite element node A the
dissipative term of the first-order scheme (4.33b) takes the form

- MAAUA, (4.34a)

where the summation extends to all nodes B topologically connected to node A.
Since the lumped-mass matrix is obtained by row sum MAA = ]TB MAB, we may
rewrite the dissipative term (4.34a) as

-UZ), (4.34b)

where 0 < d,AB < 1 is the required local modulation coefficient. Observe that the
dissipation operator consists of segment contributions (the sides of the elements for a
triangular mesh); moreover, the ID character of segments allows an easy adaptation
to a finite element context of the procedures developed in ID to limit the dissipative
effect.

To illustrate the proposed limitation procedure, we consider its application in con-
nection with the artificial viscosity method. As already mentioned, the local parameter
dAB must be expressed in terms of a sensor which recognizes the discontinuities in
the flow. As suggested by Jameson (1985), an effective sensor to detect the presence
of shocks can be constructed by considering the second derivative of the pressure. To
this end, for a given segment A-B one introduces the quantities

PB-IPA+PA- , . PB+-ZPB+PAdA = __ - and dB - —±-—r • , (4.35a)
PB + %PA + PA^ PB+ + 2pB + PA
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where

and pB+ = pA+2(xB-xA) -[Vp]B. (4.35b)

Then, the artificial viscosity coefficient for segment A-B is evaluated from the relation

d,AB = min(x max(d^.ds). 1). (4.35c)

where \ is an adjustable parameter. In this way d,AB is maximum on both sides of a
shock and zero inside it. Note the presence of a free parameter in this last expression.
This is avoided in more elaborate TVD schemes, such as, for instance, those developed
by Harten (1983) and Yee (1987).

4.5.3.3 Nonlinear artificial dissipation for stabilized methods Stabi-
lized methods such as SUPG, see Chapter 2, guarantee that spurious oscillations
created in the neighborhood of sharp solution gradients do not propagate all over the
computational domain. Recall that this is not the case with the standard Galerkin
method. Nevertheless, stabilization techniques such as SUPG are linear high-order
methods and consequently some oscillations will remain close to near-discontinuities
(recall Godunov's theorem). This is due to the absence of control of the solution
gradient in directions other than along the streamlines. This has motivated the de-
velopment of nonlinear discontinuity-capturing versions of stabilized methods, with
the objective of obtaining monotone solutions in the presence of sharp layers. For
simplicity, we shall illustrate the discontinuity-capturing version of the SUPG method
with reference to a scalar convection-diffusion problem.

To suppress the residual oscillations near strong solution gradients an additional
nonlinear diffusion term is added. That is, an extra consistent (residual-based) term is
added apart from the standard stabilization term presented in Section 4.4.2.3. Recall
that in scalar form this stabilization term is ^,e(

tP(w),T%.(u))ftf where $(w) is
the residual of the differential equation. The added diffusion can be isotropic or
anisotropic. The former has the same structure as standard SUPG, see equation
(2.57), namely ̂ (w) = a • Vw;. Thus, the shock-capturing term takes the form

X ( u ) f . , (4.36)

where a is a newly defined vector field. For instance, Hughes and Mallet (1986b)
propose using the projection of a onto Vw. That is, in the case || Vu|| ^ 0, the
projected velocity is given by

a - Vu _
a = „_ noVu.

||Vw||2

The new stabilization parameter r depends on the standard r, see Section 2.4.3. Recall
that for each element
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where h is a measure of the element size, whereas /? is a function of the mesh Peclet
number defined by

p h\\a\\A=_,

where i/ is the physical diffusivity. As seen in Chapter 2, in ID convection—diffusion
the optimal choice for ß is given by

B = coth Pe - —
Pe

and the choice 8 = ß corresponds to the full upwind case, which maximizes the
stabilization parameter r,

The stability parameter f controlling the discontinuity-capturing term can be de-
fined in a number of ways. Hughes and Mallet (1986b) initially suggest using f = T,
but this choice is overly diffusive when the convection velocity and the gradient of u
are parallel vectors, that is when a = a. It amounts to double the SUPG stabilization
term. They subsequently propose using

T - max(0, TO. -T), with T&=/3—-—. (4.37)
2||a||

This method produces an added diffusion of form, see equation (4.36),

(4.38)

where the bracketed term, which acts as nonlinear diffusion, may be negative.
An alternative approach is to change the definition of a and still use a residual-

based approach. Johnson, Szepessy and Hansbo (1990), Hansbo and Johnson (1991)
and Galeao and do Carmo (1988) suggest using the following definition of a:

where 9t,(u) is the residual of the governing equation. The nonlinear artificial viscosity
introduced by this method is given by

/ t%(uf/ \\Vu\f i f H V i i l l ^ O ,
^shock — < n ,

1 0 otherwise.

Here, parameter f is computed as in equation (4.37) but making use of the new
definition of a. Finally, note that the nonlinearity of the discontinuity-capturing term
always originates from the definition of a, which depends on Vu.

Codina (1993a) suggests, based on the discrete maximum principle, an anisotropic
nonlinear viscosity that should act in the crosswind direction only. The objective is
to add diffusion without affecting the streamline dissipation introduced by the linear
form of the SUPG method. This requires, first, a nonlinear added diffusion,

^shock = „ ,
otherwise.



186 COMPRESSIBLE FLOW PROBLEMS

where a = max (0. x ~ /dor) • The recommended value of the constant x for linear
elements is x = 0.7. Second, it also requires a tensorial structure in the added term

where I is the unit tensor.
Finally, it is important to note that both isotropic and anisotropic added dissipa-

tions are only active when || Vu|| ^ 0 and that numerical results are sensitive to the
numerical tolerance (|| Vu|| < tolerance «• || Vw|| = 0) implemented in the code.

4.6 NEARLY INCOMPRESSIBLE FLOWS

Most numerical methods for the analysis of compressible flow problems present
numerical difficulties when applied to low-speed, nearly incompressible flows. This
is clearly due to the fast propagation of pressure signals as flow conditions approach
the incompressible limit. In the case of low-speed flow, the accurate representation of
pressure transients with explicit finite element schemes designed for the compressible
regime would require the use of extremely small time steps, clearly undermining the
practical utility of such schemes. In more mathematical terms, pressure behavior
changes from hyperbolic (wave propagation) to elliptic character when passing from
the compressible to the incompressible regime: the mass-conservation equation and
the equation of state are replaced by the incompressibility constraint requiring that
the velocity field be divergence-free.

Different approaches have been pursued to develop computational strategies for
approximating flows at all speeds, from highly compressible to nearly incompressible.
Methods for all flow speeds require an implicit treatment of the mass-conservation
equation and of the pressure terms in the momentum and energy equations, in order
to introduce the required elliptic behavior into the governing equations. A fractional-
step approach to the time integration of the conservation equations is usually adopted,
as it allows the separation of the necessarily implicit pressure terms from the other
terms in the conservation equations.

An interesting splitting-up scheme for 2D flows consisting of three distinct phases
was originally developed in finite difference format by Hirt et al. (1974) and subse-
quently extended to 3D problems by Stein, Gentry and Hirt (1977). The key idea in
deriving such a fractional-step approach has been to note that the convective terms
in the conservation equations vanish in the Lagrangian formulation; that is, when
the computational mesh moves with the fluid. It is this reduction that suggests to
first solve the Lagrangian form of the equations in the first phase of the calculation
cycle and then to add the convective contributions as a separate step in the last phase.
The middle phase adds an implicit pressure calculation that permits solutions to be
obtained at all flow speeds.

This strategy has subsequently been adapted to a finite element context by Donea,
Giuliani and Halleux (1982), see also Donea (1983), and has been widely used in the
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simulation of transient dynamic problems involving fluid-structure interaction. An
application of this splitting-up technique is described in Section 4.7.2.

More recently, the splitting-up approach to flows at all speeds has been further
exploited in the finite element context. Particularly noteworthy is the characteristic-
based split (CBS) algorithm introduced by Zienkiewicz and Codina (1995), see also
Zienkiewicz et al. (1995), Codina, Vazquez and Zienkiewicz (1998) and Zienkiewicz
and Taylor (2000b). A related modeling approach of nearly incompressible flows has
been proposed by Sampaio and Moreira (2000).

The central feature of the above methods is the derivation of an evolution equation
for the pressure field through the elimination of the density from the mass balance
equation. The pressure, momentum and energy equations are then discretized in time
by a splitting-up procedure which ensures an implicit treatment of the equation for
the pressure field and of the pressure terms in the momentum and energy equations.
In this way, nearly incompressible flow situations can be treated without numerical
stability problems. A further advantage of the splitting-up procedure is the possibility
to isolate the convective terms and treat them by means of algorithms, such as the
Taylor—Galerkin (or characteristic Galerkin) methods, designed for pure convection
problems.

Stabilized finite element algorithms of the GLS or SUPG type can also be adapted
to deal with nearly incompressible flows. In the low Mach number limit, the classical
choice for the stabilization matrix r given in Section 4.4.2.3 fails to provide ade-
quate stabilization. This is essentially due to a mismatch which occurs for low Mach
numbers between the magnitude of the fluxes in the original equations and the corre-
sponding terms in the numerically added viscosity. An alternative definition of r has
been proposed by Wong, Darmofal and Peraire (2001) which leads to a formulation
which can handle very low Mach number flows accurately.

4.7 FLUID—STRUCTURE INTERACTION

Fluid-structure interaction phenomena are an important consideration in several engi-
neering fields. This is manifestly the case in the design of automotive and aerospace
structures, as well as in modeling the response of offshore structures, long-span
bridges and high-rise buildings. Fluid-structure interaction also plays an important
role in the safety assessment of power generation plants and many other industrial
installations.

The general topic of fluid-structure interaction is indeed a particularly broad sub-
ject in that it simultaneously brings together all the aspects associated with both
structural mechanics and fluid mechanics. Each of these two areas are complex by
themselves; however, when considered together, the situation becomes even more
complex. In fact, the interaction (or coupling) between the fluid and solid response
can be viewed as a feedback loop of the type illustrated in Figure 4.10: the structure
surface loading is not known a priori but depends on the interface pressures in the
fluid; the fluid response is in turn a function of the structure's surface motion.
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External Forces Displacements - Stresses

STRUCTURAL RESPONSE

Interface Pressures Interface Displacements

FLUID RESPONSE

Velocities - Pressures

Fig. 4.10 Feedback loop in fluid-structure interaction.

In this section we restrict the fluid under consideration to be compressible and
inviscid. There are indeed well-developed fluid-structure formulations for viscous
fluids, in both the compressible and the incompressible regime. The reader interested
in fluid-structure algorithms for viscous fluids should consult the relevant literature,
such as, for instance, the original works of Liu and co-workers (Liu and Chang, 1985;
Liu and Chang, 1986; Liu and Gvildys, 1986)

Here, we shall consider two classes of fluid-structure problems. The first is con-
cerned with situations in which the displacements of the fluid are small, so that the
so-called acoustic approximation for the fluid is valid. Modeling the response of a
linear elastic structure interacting with an acoustic fluid is of particular interest in the
framework of vibration studies of aeronautical structures containing an inviscid fluid.
The second class of fluid-structure problems is concerned with situations involving
a large-displacement response of the fluid-structure system. In such cases, the use
of the Arbitrary Lagrangian—Eulerian (ALE) formulation introduced in Section 1.4
is recommended to model the nonlinear fluid domain and ease its coupling with the
nonlinear structural domain usually treated in the Lagrangian description.
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4.7.1 Acoustic approximation

When displacements are small, the acoustic approximation leads to simplified for-
mulations of the fluid response, either in terms of fluid displacements or in terms of
pressure. The displacement formulation of the fluid is attractive in that it is directly
compatible with the standard formulation used for structures, thus facilitating the cou-
pling between fluid and structural domains. Nevertheless, a formulation based upon
the discretization of the fluid pressure is generally preferred. The reason is that only
one dependent variable is involved in the pressure formulation, while the displace-
ment formulation includes as many unknowns as the number of space dimensions. In
this section subscript F will be used to refer to the fluid domain and subscript 5 to
the structure.

The derivation of the pressure equation governing the fluid response in the acoustic
approximation starts from the linearized form (convective terms neglected) of the
conservation equation for momentum introduced in Section 1.4. When specialized to
an inviscid compressible fluid, the linearized form of the momentum equation reads

Vp, (4.39)

where UF is the fluid displacement vector and the pressure p is assumed to be given
by the barotropic (independent of temperature) equation of state

p = —«:V • UF, (4.40)

where K is the fluid bulk modulus. Note that pressure is positive in compression.
Differentiating this equation twice with respect to time and using the linearized form
(4.39) of the momentum equation yields the wave equation

72p (4.41)
c2 Ot2

for the pressure field, where c = yK/p is the speed of wave propagation.
The boundary conditions associated with the wave equation (4.41) usually consist

of both Dirichlet and Neumann conditions. On portion F ̂  of the boundary of the
fluid domain ftp the value of pressure is prescribed as p = po, where pr> is a given
function. The remaining part of the boundary consist of a portion F jy where the
Neumann condition dp/dn — hp is prescribed (h is given), and a portion F/, the
interface between the fluid and the structure, on which the fluid-structure interaction
relations must be enforced.

The key point in coupling the fluid and structural domains lies in the imposition
of the interface conditions. The relations on the fluid-solid interface F / are:

o Displacement/velocity compatibility. An inviscid fluid is free to slip along the
structural interface, but the displacement/velocity of the fluid along the normal to
the interface must be equal to the displacement/velocity of the structure along the
same direction, namely

np • UF — UF • us (continuity of normal displacements), (4.42a)

UF • VF = np • vs (continuity of normal velocities). (4.42b)
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This condition ensures that the fluid and structural domains will not detach or
overlap during the motion. Both equations are equivalent and we use one or the
other depending on the formulation employed (displacements or velocities).

o Traction equilibrium. That is, the stresses in the fluid must be equal to the stresses
in the structure. For inviscid fluids this condition reduces to

= ns ' cr (continuity of interface traction vector), (4.42c)

where cr is the stress tensor on the structure.

Then, denoting by q the weighting function for the fluid, the weak form of the
pressure formulation is given by

+ (q.,pF(nF'Us))ri = 0. (4.43)

The last integral represents the coupling term with the structure and is obtained using

dp
— = -pF (un}F = -PF (Un)s

from the linearized momentum equation (4.39) and the continuity condition (4.42a).
The governing equation for the structural domain is the linearized momentum

equation

ps = V-cr + b., (4.44)

where us is the structural displacement vector, cr the Cauchy stress and b the pre-
scribed body force per unit volume. The boundary conditions consist of the Dirichlet
condition us = UD on Ff,, the Neumann condition n • cr = hg on F^ and relations
(4.42) on the interface F/ with the fluid.

Denoting by ws the vector of weighting functions for the momentum equation
(4.44) and noting that the normal traction applied by the fluid on F / is p up, the weak
form of the structural problem is

(ws.,psus)Qs

— (ws-,bs}r — (ws-.pnF^Y ~ 0- (4-45)

For a linear elastic structure interacting with an acoustic fluid, the system of semi-
discrete equations resulting from the finite element spatial discretization of the weak
forms (4.43) and (4.45) takes the following partitioned matrix form in the absence of
damping, see Belytschko (1983) for details:

M5 0 \ fus\ , fKs R^ fus\ _ ff?\ (446)

Unfortunately, the partitioned matrices in this system are not symmetric. This
lack of symmetry represents a drawback in the case of implicit time integration of the
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equations and requires non-standard algorithms to extract eigenvalues for vibration
analysis. This has motivated the development of symmetric formulations, such as
the ones proposed by Moran and Ohayon (1979) and Kehr-Candille and Ohayon
(1992), see also the references therein. In the framework of vibro-acoustic studies
of aeronautical structures, such as liquid-propelled launch vehicles, they consider
the response of an elastic structure containing an inviscid compressible fluid. The
structure is again described by the displacement field MS, but the fluid is now described
by two scalar fields, the pressure p and the displacement potential (j>, such that u p =
V(j> and Jn 0 = 0. This choice of flow variables leads to symmetric formulations
and allows the incorporation of a damping mechanism on the fluid-structure interface.

Remark 4.10 (Added mass concept). If the fluid can be considered incom-
pressible, the wave equation (4.41) for the pressure field becomes the Laplace
equation V2p = 0 and thus, there is no pressure-mass term in the second equa-
tion of system (4,46). The pressure is then obtained from the second equation
as

and can be substituted in the first equation of system (4.46) to obtain the modified
structural equation

(Ms + PF RT K/ R) iis + Ks us = ff - RT K^1 ff l.

The need for a coupled solution has thus been eliminated and the effect of the
incompressible fluid on the structure is described by a so-called added mass
term that modifies the standard mass matrix MS. Note that, in contrast to the
usual sparse and banded finite element matrices, the added mass matrix is full
for the structural nodes in contact with the fluid.

4.7.2 Nonlinear transient dynamic problems

The second class of fluid-structure problems we wish to consider is concerned with
situations involving a large-displacement response of the fluid, possibly accompanied
by a nonlinear response of the structure. In such cases, the use of the ALE formula-
tion introduced in Section 1.4 is recommended to model the fluid domain and ease
its coupling with the structural domain usually treated in the Lagrangian description.
We shall illustrate a particular problem in this class, namely the nonlinear transient
dynamic response of fluid-structure systems. Fluid-structure interaction phenom-
ena of this type are often encountered in the safety studies of industrial plants or
components, where transient events such as explosions, impacts or crashes must be
simulated. The particular algorithms discussed below are implemented in PLEXIS-
3C, a finite element computer code for fast transient analyses (Bung et al., 1989).

4. 7.2. 1 Structural modeling A Lagrangian mesh in which material points and
nodal points remain coincident throughout the calculation is usually adopted for the
structural domain. If equilibrium is expressed in the current configuration in terms of
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the Cauchy stress, <r, the weak form of the momentum equation is identical to that in
equation (4.45) for the linear theory. Then, the following set of differential equations
in time results from its finite element spatial discretization:

Ms as = fext - {int, (4.47)

where MS is the mass matrix of the structure, as the vector of nodal accelerations,
fext is a nodal vector of externally applied loads and f ,nt the nodal vector of internal
forces arising from the discretization of the stress-divergence term in the momentum
equation. See for instance Belytschko (1983) or Belytschko, Liu and Moran (2000)
for a more detailed account of the Lagrangian mesh/Cauchy stress formulation. In
fast transient problems, the time integration of the differential system (4.47) is usually
performed using the explicit central difference scheme

v?+1 = vS + ^H + a5+1) and u?+1 = «S +

where YS is the vector of nodal velocities and us the vector of nodal displacements.
The last equation gives the new mesh node displacements and thus the updated config-
uration of the structural domain. In this new configuration, the stresses crn+1 are then
evaluated by application of constitutive models relating an objective rate of Cauchy
stress to the strain rate (or stretching). The latter is evaluated from the half-step
velocity vj+1/2 = vg + ^ag.

Note that the compatibility conditions (4.42) must be enforced along the interface
between the structure and the fluid. Their implementation in the context of an ALE
description of the fluid domain is discussed in Section 4.7.2.4.

4.7.2.2 ALE algorithms for compressible fluids The fluid is again assumed
inviscid and compressible and its flow governed by the Euler equations. To model the
hydrodynamic domain in the ALE description, a common practice is to use simple
finite elements with linear or multilinear local approximations for the fluid velocity,
v, and the mesh velocity, v. Furthermore, the density, p, the specific internal energy,
e, and hence the pressure, p, will be assumed elementwise constant.

According to the developments in Section 1.4, where the relative velocity c :=
v — v between the material and the mesh has been introduced, the following integral
form of the mass and internal energy equations is used for updating the element mass
and internal energy:

dt
d_
di

dt
d_
dt

I pd£l = — I pc-ndT,
K J& Jr*

I ped£l = — I p V - v d f i — / pec-ndT.
Jne Jn* Jr*

In addition, use is made of the rate of change of the element volume V e given by

dV
= I v

JT*
ndT

x
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to update the element density and specific internal energy via

Me r
— .Ve Me

On the other hand, the weak form of the ALE momentum equation (1.22) is given by

(wF,pvt) + (wF,p(C'V)v) = (VwF,pl) + (wF,pb) + (wF,tF)TN,

where WF represents the vector of weighting functions, tF = pn is the normal
traction vector prescribed on portion T N of the fluid domain boundary. The finite
element discretization of the previous momentum equation results in the matrix system

^Tot
= ft + ft + fp + f, (4.48)

x
where MF is the mass matrix, ft represents the nodal loads induced by the transport
of momentum components, f & denotes the nodal loads due to the applied body forces
pb, fp represents the nodal loads due to the fluid pressure p, and f accounts for
the prescribed boundary pressure. This last vector includes the reaction induced by
prescribed displacements and velocities, as well as the compatibility conditions at the
fluid-structure interface

Because of the presence of transport terms in the above ALE equations for mass,
momentum and internal energy, special treatment is suggested for time integration of
the equations in the fluid domain. As already mentioned in Section 4.6, a time integra-
tion scheme valid for flows at all speeds can be derived by adapting the fractional-step
method introduced in the finite difference context by Hirt et al. (1974) and Stein et al.
(1977). The method is organized in three steps. Since the transport terms in the
semi-discrete conservation equations vanish in the Lagrangian formulation, when
c = v — v — 0, the Lagrangian form of the equations is solved in the first step using
an explicit time scheme. This provides intermediate values of the density, velocity
and internal energy. Note that the element mass does not change in the Lagrangian
phase. In the second step, which is also assumed Lagrangian, an implicit pressure
calculation is introduced. This step eliminates the usual stability condition of explicit
schemes that limits sound waves to travel no further than one element per time step.
This allows solutions to be obtained for flows at all speeds, from highly compressible
to nearly incompressible. The transport (convection) contributions are then added
in the last step of the time integration procedure. The evaluation of the convective
terms requires an updating of the mesh velocities v. An automatic algorithm, such
as the one proposed by Giuliani (1982), should be employed for this purpose. Note
that the transport phase is hyperbolic and must be stabilized. Donea, Giuliani and
Halleux (1982) discuss additional details on the above fractional-step integration of
the conservation equations.

4.7.2.3 Boundary conditions Having established the general computational
framework for the treatment of the structural and fluid domains, we now consider
how boundary conditions are enforced. As usual, they are subdivided into natural
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and essential conditions. Natural conditions are prescribed external loads, such as
concentrated forces or distributed pressures. Their treatment does not pose any prob-
lem, as they fit as natural boundary conditions in the relevant variational formulation.
The essential boundary conditions include prescribed displacements and velocities, as
well as the compatibility conditions at the fluid-structure interface. Essential bound-
ary conditions on the fluid domain are best implemented by means of the Lagrange
multiplier method, see Remark 1.13.

Consider for instance that the essential conditions are imposed on the half-step
value vn+1/2 of the velocity at the fluid-structure interface (thus, ft is zero in this
step). Such conditions can be expressed as a linear set of constraints of the form

Avn+l/2 = bn+l/25 (4 49)

where A is a sparse (most of its coefficients are zero, in particular those related to
degrees of freedom with no essential boundary condition) rectangular matrix (number
of degrees of freedom for which essential boundary conditions are imposed times total
number of degrees of freedom), v is the vector of nodal velocities and b a vector of
(possibly time-dependent) prescribed values. The equilibrium equations for the half-
step are written in the form

n+l/2 n-1/2.

MF( - ^ - ) = f? + f? - Cac, (4.50)

where MF is the mass matrix, fi, and fp were already defined in (4.48), and finally, f reac

stands for the unknown reaction forces produced by the essential boundary conditions.
We assume, for simplicity, that all the prescribed boundary pressure is due to Dirichlet
boundary conditions, that is f" = — freac- In order to introduce the constraints defined
by (4.49) in the equilibrium equations (4.50), Lagrange multipliers are introduced.
The unknown reactions are expressed as

A*f£ac = ATAn , (4.51)

where A is the vector of Lagrange multipliers. Substituting this expression into the
equilibrium equations (4.50) and rewriting (4.49) yields

MF AT\ /vn+1/2\ _ /MF v"-1/2

A 0 ) \ Xn ) ~ \ bn+1/2

Since the mass matrix is regular (in fact, it is symmetric and positive definite), we
can compute its inverse and the previous system can be solved in two steps. The first
equation can be written as

vn+l/2 = vn-l/2 + M~l (A<(fn + fn) _ fij X
n) , (4.52a)

and after substitution in the second one, we solve for A n

T\n = Avn~1/2 + AfAM-1^ + f") - bn+1/2. (4.52b)
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Note that AM^1 AT is regular if and only if the rank of A is maximum, namely
rank A is equal to the number of degrees of freedom for which essential boundary
conditions are imposed. Once the Lagrange multipliers are known, v n+1/2 is deter-
mined from the first equation. Finally, if required the reaction forces f n

reac are then
obtained from expression (4.51).

This approach as stated has an important drawback (specially in the context of
an explicit code): the inverse of the mass matrix is full! Although the system of
equations in (4.52b) is not large (its size is only the number of degrees of freedom
for which essential boundary conditions are imposed), the evaluation of the inverse
matrix precludes the use of the algorithm as presented. Note however, that in transient
dynamics it is standard to use the lumped (or diagonal) mass matrix, M p. If this
matrix is used in (4.52) things change drastically: its inverse is diagonal (and trivial)
and thus A[M •p]~1 AT can be constructed easily. Moreover, the lumped-mass matrix
uncouples each degree of freedom of v n+1/2 and consequently equations (4.52) can
be particularized for the subset of degrees of freedom for which essential boundary
conditions are imposed, that is each matrix in the product A [M p] -1AT can be square.
Under these circumstances the previous algorithm is efficient and can be used in the
context of fast transient dynamics computations.

4,7.2.4 Fluid-structure coupling As already noticed for the linear acoustic
approximation, Section 4.7.1, a key point in the fluid-structure coupling lies in the
prescription of the interface conditions. These conditions are already described by
equations (4.42).

To illustrate the ALE coupling procedure along fluid-solid interfaces, consider a
structural member in permanent contact with an inviscid fluid which is allowed to
slide along the structure. Two nodes are placed at each point of the interface: one fluid
node and one structural node. Since the fluid is treated in the ALE formulation, the
movement of the fluid mesh may be chosen completely independent of the movement
of the fluid itself. In particular, we may constrain the fluid nodes to remain contiguous
to the structural nodes, so that all nodes on the sliding interface remain permanently
aligned. This is achieved by imposing that the grid velocity VF of the fluid nodes at
the interface be equal to the material velocity v s of the adjacent structural nodes.

The permanent alignment of nodes at ALE interfaces greatly facilitates the flow
of information between the fluid and structural domains and permits fluid-structure
coupling to be effected in the simplest and most elegant manner; that is, the imposition
of equations (4.42) is simple because of the node alignment.

The equilibrium condition, see equation (4.42c), as in the linear acoustic regime,
states that at each point of the interface between structure and inviscid fluid a contact
pressure is transmitted. Moreover, the interaction pressure is directed along the
normal to the interface. In the finite element representation, the continuous interface
is replaced with a discrete approximation and instead of a distributed interaction
pressure, consideration is given to its resultant at each interface node, that is to the
interaction force r.

The compatibility condition, stated in equation (4.42b), imposes continuity of the
velocity components normal to the interface. Recall that the tangential velocities at
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the fluid and solid nodes on the interface are unconstrained. This condition can be
expressed in the form (4.49). For instance, in 2D and for one point we have

A = (nx, ny, -nx, -ny); v = (vFx.. UF», vSx., vSy) ; b = (0).

The interaction force r, see (4.5 1), at this point is expressed in terms of one Lagrange
multiplier (only one condition is presented):

&t (TFX; rFy. rsx- rsy) = (nx. nv, —nx. — n t f) A.

This is repeated for each interaction node to construct the vectors and matrices in (4.49)
and (4.51). This allows us to solve (4.52b) and from (4.51) obtain the interaction
force at each node on the ALE interface. In this manner, the fluid and structural
responses can be solved separately, though achieving a tight coupling between the
two subdomains.

Remark 4.11 (Normal to a discrete interface). In practice, especially in com-
plex 3D configurations, one major difficulty is to determine the normal vector
at each node of the fluid-structure interface. Various algorithms have been
developed to deal with this issue, Casadei and Halleux (1995) and Casadei and
Sala (1999) present detailed solutions. In 2D the tangent to the interface at a
given node is usually defined as parallel to the line connecting the nodes at the
ends of the interface segments meeting at that node.

Remark 4.12. The above treatment of the coupling problem only applies to
those portions of the structure which are always submerged during the calcula-
tion. As a matter of fact, there may exist portions of the structure which only
come into contact with the fluid some time after the calculation begins. This is,
for instance, the case for structural parts above a fluid-free surface. For such
portions of the structural domain some sort of sliding treatment is necessary, as
for standard Lagrangian methods.

4.7.3 Illustrative examples

Two numerical simulations are presented that illustrate ALE finite elements in tran-
sient dynamic fluid-structure interaction as outlined in the previous sections. Calcu-
lations were performed with PLEXIS-3C finite element code (Bung et al., 1989).

4.7.3.1 Flexible vessel experiment A schematic of the configuration is de-
picted in Figure 4.11 . A thin cylindrical vessel with a hemispherical bottom is nearly
completely filled with liquid and impulsively loaded by the detonation of an explosive
charge located on the vessel axis. The vessel contains a flexible inner shield hinged
at its base. The top of the vessel is clamped to a rigid cover. Due to symmetry, only
half of the configuration is actually modeled. First, a purely Lagrangian solution was
attempted using the finite element mesh shown in Figure 4. 1 1 . Conical shell elements
are used to model the structural parts, while triangular and quadrilateral fluid elements
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• Rigid Roof

Fig, 4.11 Model of containment vessel and element mesh for Lagrangian and multiphase,
multicomponent ALE solutions.

are employed to model the explosive charge, the liquid and the cover gas at the top of
the vessel. The fluid-structure interfaces are not properly treated in this Lagrangian
example because fluid and structural nodes coincide, causing the fluid to stick to the
structural walls. As can be observed from Figure 4.12, large distortions of the fluid
mesh do occur and due to mesh entanglement the calculations failed after 95 ms.

The experiment was then repeated using the ALE description in the hydrodynamic
domain and treating fluid-structure interaction at the ALE interfaces as explained in
the previous sections. The fluid is now able to slide along the structural walls and,
as shown in Figure 4.12, the automatic mesh rezoning algorithm succeeds in keeping
the hydrodynamic mesh reasonably regular.

Another experiment was then performed in which the ALE algorithm was used to-
gether with a heterogeneous (multiphase, multicomponent) fluid formulation. Hence,
there are no Lagrangian fluid-fluid interfaces in this calculation. The finite element
mesh is depicted in Figure 4.13. As can be appreciated from this same figure, the
mesh distortions are now minimal. The position of physical fluid-fluid interfaces may
be estimated from Figure 4.13 where the mass fractions of the various components
are plotted. The present results are found to be in substantial agreement with those
reported in Figure 4.12 obtained with the ALE multi-fluid formulation.

4.7.3.2 An industrial application As an example of an industrial application
of the ALE methodology, we consider the simulation of an explosion in a power
transformer cell which is part of an underground power plant, see Figure 4.14a. This
problem is discussed in detail by Casadei et al. (2001) and the results are reproduced
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Fig. 4.12 Purely Lagrangian solution of containment vessel (left) and ALE solution using
Lagrangian fluid-fluid interfaces (right).

Fig. 4.13 ALE solution of containment vessel using multicomponent fluid formulation: final
mesh configuration (left) and mass fractions of the various components (right).
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here with their kind permission. If an electrical fault occurs inside the oil-insulated
equipment, an arc is likely to occur causing pyrolysis of the mineral oil. As a result,
a large quantity of gaseous hydrocarbons is produced containing over 70% hydrogen
which may ultimately break the transformer tank and propagate inside the cell.

Under critical circumstances, the air-hydrocarbon mixture may ignite giving rise
to a strong blast. The aim of the study is to assess the structural response in case of
explosion of the aluminum tubes (1 m diameter) that contain and insulate by means
of SF6 gas the high-voltage bars running out from the power transformer. Suitable
assumptions allow the determination of the initial conditions of a high-pressure and
temperature bubble that simulates the energy associated with the explosion. The
explosive bubble is surrounded by air at normal conditions, see Figure 4.14b. An
elasto-plastic material describes the behavior of the aluminum tubes represented in
Figure 4.14c.

Figure 4.14d shows the structural portion of the computational domain. The alu-
minum tubes are discretized by means of shell elements, while the transformer and
cell walls ate assumed rigid and are thus not discretized. Figure 4.14e shows a portion
of the fluid domain discretized by means of tetrahedral elements and the embedded
shell structural elements for the aluminum tubes.

Figures 4.14f and 4.14g show the computed mass fractions of air at half the time
and at the end of the transient. A pressure plot at half the time of the transient is shown
in Figure 4.14h, while Figure 4.14i illustrates the deformed shape of the aluminum
tubes at 50 ms. Deformation is amplified 10 times.

As shown by the above example, ALE finite element computer codes, such as
PLEXIS-3C, represent very useful modeling tools for the simulation of postulated
accident situations in industrial plants.

4.8 SOLVED EXERCISES

4.8.1 One-step Taylor—Galerkin solution of Burgers' equation

The inviscid Burgers' equation (4.2) is solved over the ID domain ]0, L[. The inlet
boundary condition u(0, t) — 1 is prescribed and the following initial data are used:

1 0 < x < 0.64,

w(ar, 0) = { 1 - (x - 0.64)/(0.20) 0.64 < x < 0.84,

0 0.84 < x < 1.0.

This skew initial profile straightens as time goes on until a discontinuity is formed
which propagates at the dimensionless speed of 0.5. Time integration is performed
by means of the one-step second-order scheme

At
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(a) (b) (c)

(i)

Fig. 4.14 Simulation of an explosion in a power transformer cell (Courtesy of ENEL Re-
search Hydraulics and Structures, Milano).
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where in view of the differential equation, see (4.2),

ut - -/*, and?/« = -fxt = -/ta. = -(fuut)x =

The time discretized version of Burgers' equation therefore reads

A .
At 2 u ' *'*

After integration by parts of both spatial terms, the second-order Taylor-Galerkin
formulation is given as follows:

fL wn+1 — un fL At fL
I w — dx = I wx f

n dx — / wx (u
n) u™

JO At JQ 2 Jo
dx

x=L

The boundary term can be rewritten using ft = fu ut = —u2 ux, as

- Ur - ̂ («")2<)l""i = - Ur + ̂
L v z /J iC=0 L v z

which provides a natural condition for prescribed boundary flux. We therefore replace
the inlet boundary condition u(Q,t] — 1 by the condition /(0,£) = (|w2)a;_0 = 0.5.

The problem unknown u is linearly interpolated over an element and three different
representations of the flux / in the convective term are tested:

1. / is elementwise constant and determined from the mean value of u in the
considered element (constant representation)',

2. / is determined from the value of u at the two element Gauss points and a two-
point Gaussian quadrature is used to evaluate the convective term (classical
representation);

3. / is linearly interpolated using its evaluation at the element nodes (group rep-
resentation),

The two-point quadrature rule is also used on the diffusion term.
The scope of the exercise is essentially to compare the above three representations

of the flux. The results obtained at dimensionless times t = 0.16 and t — 0.30 using
a mesh of 50 uniform linear elements and a Courant number C — u maa;At/h = 0.5
are shown in Figure 4.15. As long as the initial profile straightens, the solutions
obtained with the three flux representations are quite similar. Nevertheless, one may
already note a more pronounced dissipative effect when the linear interpolation of the
flux is employed. The differences are definitely more marked when the discontinuity
propagates, the group representation of the flux giving the best solution.
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h
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o 01 oi u 04 os o* or o« o«

Fig. 4.15 Simulation by the one-step second-order Taylor-Galerkin method of the formation
and propagation of a discontinuity. Comparison of three local representations of the flux in
Burgers' equation: constant flux interpolation (top); classical interpolation (middle); linear flux
interpolation (bottom). Solution times are from left to right: t = 0, t = 0.16 and t = 0.30.

4.8.2 The shock tube problem

We now solve the classical shock tube problem proposed by Sod (1978) for which
there exists an exact solution to the ID Euler equations. The problem involves a
shock wave, a contact discontinuity and an expansion fan. A contact discontinuity is
an interface between two fluid regions of different densities, but equal pressure. The
shock tube problem is thus representative of the numerical difficulties encountered in
the solution of the Euler equations of gas dynamics.

On the spatial domain ]0,1[, we solve the ID system of Euler equations, see (4.16a)

U, + F(U)X = 0,

where U, F and the Jacobian matrix A are described in Remark 4.5, the eigenvalues
of A are explicitly determined in (4.24), and they define the three characteristics
described by (4.25) and plotted in Figure 4.7. Under the assumption of a perfect gas,
the pressure is given by (4.17a), namely
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and we take 7 = 1.4. The following initial data are used:

0 < a r < l / 2 l/2<x<l

p = 1.0 p = 0.125
pu = 0.0 pv = 0.0

pE = 2.5 p£ = 0.25

The initial density and pressure difference is maintained by a diaphragm which is
raptured at t = 0. The objective is to compute the evolution of the conservation
variables as a shock and a contact discontinuity propagate along the tube.

One-Step Taylor— Galerkin. Time integration of the Euler equations is performed
by means of the one-step second-order Taylor-Galerkin scheme

The associated variational form is given as follows after integration by parts of the
spatial terms:

Un+1 - Unf Un+1 - Un C
I w-- - - - dx=- \

Jo At 70

a;=0

where, as in the previous example, the differential equation, U t = — Fx, is used to
determine

U« - -Fxt = -Fte = -(AU t)x = (AFx)x - (A2Ux)x .

Note that the boundary term allows us to introduce prescribed flux components.
In the present example, the definitions of U, F, see Remark 4.5, indicate that the
boundary value of the density and energy flux is zero, while the boundary value of
the momentum flux is given by the left and right pressures associated with the initial
data.

The problem was solved using a mesh of 100 uniform linear elements. Time
integration has been performed until t = 0.2 using a fixed time step At = 1.5 x 10-3.
This corresponds to a Courant number

The convective and diffusive terms were integrated using a two-point Gaussian
quadrature. A linear approximation of the flux was used in compression regions
(dv/dx < 0), and the classical flux representation otherwise. No artificial viscosity
was introduced into the Galerkin formulation.
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Fig. 4.16 Sod's shock tube: one-step Taylor-Galerkin without artificial viscosity.

Figure 4.16 shows a comparison with the exact solution. One notes that the position
of the flow discontinuities is well predicted. However, in the absence of shock-
capturing terms, oscillations are generated around sharp solution gradients. They are
reduced in the next example by the selective addition of artificial viscosity.

Stabilization of the one-step Taylor-Galerkin solution. We repeat the solution
of Sod's shock tube problem with the selective addition of artificial viscosity, as
explained in Section 4.5.3.2. The idea is to first compute the solution to the Euler
equations using the one-step second-order method as in the previous test case. Then,
the second-order scheme is locally reduced to first order as indicated in equation
(4.32).

The local modulation of the added viscosity is performed according to expressions
(4.34) using the artificial viscosity method in equations (4.35) with parameter x — 3.0.
The results obtained at time t = 0.2 are displayed in Figure 4.17 in comparison with
the exact solution. The effect of the shock-capturing terms is to smooth out the flow
discontinuities and thereby suppress the oscillations near sharp gradients typical of
the second-order method.

Two-step Taylor-Galerkin. This method is described in Section 4.2.3.2. In the
first step of the time integration procedure, we compute the half-step value U n^112
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Fig. 4.17 Sod's shock tube: one-step Taylor-Galerkin with artificial viscosity.

of the flow variables and associated flux components at the center of the elements.
Once the flux vector Fn+1/2 is obtained, the end-of-step values are computed solving
the variational equation

W
At

dx = /
Jo

where the flux term has again been integrated by parts to produce a natural condition
of prescribed boundary flux.

Once a solution is obtained with the second-order method in time, it is smoothed,
locally, as in the previous test to reduce the non-physical oscillations near the dis-
continuities. The results obtained at time t = 0.2 with a time-step size Ai = 0.002
are displayed in Figure 4.18 in comparison with the exact solution. One notes that
the simple two-step Taylor-Galerkin method gives results of the same quality as the
one-step method.

Flux vector splitting. In order to produce an upwind-type spatial discretization of
the ID Euler equations we split the flux vector in the conservation equation

into the form
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Fig. 43.18 Sod's shock tube: two-step Taylor-Galerkin with artificial viscosity.

as explained in Section 4.4.2.1. Moreover, we generalize the standard first-order
upwind scheme as suggested by Steger and Warming (1981):

At h h

Recall that F+ is always positive (or zero), while F~ is always negative (or zero).
To reproduce the flux vector splitting technique in the finite element context, we

make use of the construction of upwind finite element schemes discussed in Chapter
2 and consider the weak form

or, after integration by parts of the convective terms

We use a uniform mesh of 100 elements with piecewise linear interpolation of the
conservation variables and associated flux components. Figure 4. 1 9 shows the results.
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Fig. 4.19 Sod's shock tube: first-order in time and space flux vector splitting technique.
Note the excessive diffusion introduced by standard monotone methods.

A time step At = 0.004, corresponding to a Courant number of 0.8, was employed
with the Euler explicit method. The following flux vector splitting introduced by
Steger and Warming (1981) was used (see also Hirsch, 1990, Chap. 20):

(27 - l}pv + pc

2(7 - l}pv2 + p(v + c}2

l)pv3 + \p(v + c)3 + \^{p

\

)

(4.53a)

and
/

27

pv — pc \

p(v - pc)2
(4.53b)

Here, c = \fypj~p is the speed of sound, and p the pressure defined by the equation
of state of a perfect gas.

At this point, it is important to recall the definitions of F+ and F-
n adopted in

Section 4.4.2.1, see Figure 4.9. It follows from such definitions that the splitting in
(4.53) directly applies in the present example only at element ends where the unit
outward normal has components n = (1,0). At element ends with outward normal
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Fig. 4.20 Sod's shock tube: discontinuous Galerkin with artificial diffusion and forward
Euler for time integration.

with components n = (—1.0), the positive flux component obtained from (4.53a) is
actually F~ and the negative component is F+.

As shown by the results in Figure 4.19, the use of a first-order flux vector splitting
technique gives stable, but overly diffusive, results, especially as regards the represen-
tation of the contact discontinuity. Flux-limiter techniques in Section 4.5.3.1 should
be applied to concentrate the added numerical diffusion around sharp gradients only.

Discontinuous Galerkin. Here, the shock tube problem is solved using the dis-
continuous Galerkin method described in Section 4.4.2.2. The flux vector F n(U)
is split into inflow and outflow components using Steger and Warming's (1981) flux
splitting, see equations (4.53). Figure 4.20 shows the results. Conservative variables
and the associated flux components are linearly interpolated over an element. The
Euler first-order method was used for time integration. Artificial viscosity was added
to the momentum and energy equations, but only on elements close to sharp gradients.
The coefficient of artificial diffusion was taken as ve = he\e/16, where he is the
size of the element and Ae = Ae(Ue) is the maximum characteristic speed, taken as
c + v, where c = \/~fp/p is the speed of sound and v the modulus of the velocity
vector.



Unsteady
convection-diffusion

problems
After studying elliptic problems in Chapter 2 and hyperbolic problems in Chapters
3 and 4, this chapter is concerned with parabolic problems. It combines the spa-
tial discretization techniques for steady convection-diffusion problems discussed in
Chapter 2 and the numerical schemes for time integration presented in Chapter 3. The
objective is to produce time-accurate finite element methods for unsteady problems
describing transport by convection and diffusion. Only linear and scalar problems
are considered. Emphasis is placed on the accuracy properties of the Galerkin and
spatially stabilized formulations.

5.1 INTRODUCTION

Time-accurate numerical methods for solving unsteady convection-diffusion prob-
lems using finite elements are studied here. Problems in this class are parabolic. In
contrast to the pure convection problems discussed in Chapters 3 and 4, there are no
discontinuous solutions in the presence of physical diffusivity and boundary condi-
tions must be imposed everywhere on the boundary of the domain. However, Dirichlet
boundary conditions may produce internal and boundary layers with steep solution
gradients. Thus, on one hand, the stability problems of the Galerkin formulation
studied in Chapter 2 are also present here. And, on the other hand, in convection-
dominated problems, the need stressed in Chapter 3 to use time-stepping algorithms
capable of simulating the role of characteristics is also present here. However, be-
cause of the presence in convection-diffusion of a second-order spatial operator, the
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finite element techniques discussed so far for achieving spatial stabilization and time
accuracy need to be suitably adapted to deal with parabolic transport problems.

The chapter begins with the presentation in Section 5.2 of the initial boundary
value problem for convection-diffusion-reaction. This is followed in Section 5.3 by
the description of time-stepping algorithms specifically adapted to trace the transient
solution of mixed transport problems. Various classes of methods are considered.
After a brief review of classical algorithms, such as the ̂ family of methods, we discuss
operator-splitting methods separating convection and diffusion operators, as well as
high-order accurate multistep methods. This includes time-stepping techniques based
on Runge-Kutta methods and multistage schemes based on the factorization of Pad e
approximations of the exponential function.

Spatial discretization procedures for unsteady convection-diffusion problems are
then introduced in Section 5.4. The classical Galerkin formulation is presented first
and its lack of sufficient stability in convection-dominated cases is underlined. The
stabilization procedures for steady problems discussed in Chapter 2, such as SUPG,
GLS and SGS, are then extended to the transient case. Moreover, pure least-squares
formulations are introduced along the lines discussed in Chapter 3 for convective
transport problems. The accuracy properties of fully discrete schemes are also il-
lustrated. To conclude the discussion of spatial discretization procedures, we briefly
consider in Section 5.5 the extension of stabilized formulations to the space-time
domain. Finally, Section 5.6 presents solved numerical examples.

5.2 PROBLEM STATEMENT

The strong form of the convection-diffusion-reaction initial/boundary value problem
is stated as follows: given the velocity field a(x. t), the diffusion coefficient v(x. t},
the reaction a(x, t), the source term s(x. t), and the necessary initial and boundary
conditions, find u(x, t) such that

ut + a - Vw - V • (i/Vw) + au = s inftx]O.T[. (5. la)

u(x,Q) = u0(x) onft, (5.1b)

u = UD onF/}. (5.1c)

i/(n-V)« = /i on IV (5.1d)

The numerical solution of convection-diffusion-reaction problems clearly in-
volves a double discretization process, that is space discretization and time discretiza-
tion. The former will be performed by the finite element method and will be discussed
in Section 5.4. Various classes of methods can be employed to trace the temporal evo-
lution of the solution of convection-diffusion-reaction problems. They are presented
in the necessary detail in the next section.

Remark 5.1 (Boundary conditions). Equation (5. 1 a) is parabolic. Thus bound-
ary conditions are imposed on F which is the smooth boundary of H C Kn s d .
Moreover, the boundary is assumed to consist of a portion F D on which the
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value of u is prescribed, see (5.1c), and of a complementary portion T ^ on
which the diffusive flux is prescribed, see (5.Id), where h is given. Condi-
tions on F £> are Dirichlet (or essential) conditions, while conditions on F AT are
known as Neumann (or natural) conditions. Note that this last condition could
be generalized in the form

v(n • V)« = 0(n-a)(w — ue) + r/ on FJV

where ue is also given. This condition is either Neumann or Robin depending
on the given parameters Q and rj (they may vary with x and time). For simplicity,
we shall assume that the Neumann condition (5.Id) is prescribed on F jv-

Remark 5.2 (Existence and uniqueness). Quarteroni and Valli (1994, Chap.
12) and Morton (1996,Thm 2.5.1) present the exact conditions for existence and
uniqueness of the solution. In convection-dominated problems, it is sufficient
for existence and uniqueness to impose that v > v$ > 0 and 0 < JJ.Q <
a — | V • a < pi i n f J . With these conditions, the bilinear form associated
with the spatial operator (in a Galerkin formulation) is continuous and coercive,
with a coercivity constant a = min{i/0, (Vo + CoMo)/(l + CQ)}> where CQ
is the Poincare inequality constant (/fi v2d$) < Ch JQ| Vi>|2dfi). That is, the
Lax-Milgram lemma, see Section 1.5.4, can be applied.

5.3 TIME DISCRETIZATION PROCEDURES

5.3.1 Classical methods

Finite differences are usually employed for time discretization. The time-stepping
schemes presented in Section 3.4.1 for purely convective transport can be directly
employed for convection-diffusion-reaction problems. A noticeable exception is
the one-step Lax-Wendroff method introduced in Section 3.4.1.2, which cannot be
used in connection with C°-continuous finite elements due to the presence of the
second-order diffusion operator. Thus, if standard finite elements must be used, the
time-marching schemes should only involve first time derivatives of the unknown.

The most popular methods for parabolic problems are the 9 family of methods
already discussed in Section 3.4.1.1. The 9 scheme, see (3.19), applied to the
convection-diffusion-reaction equation (5.la) for constant coefficients yields

Aw
—- + 0 [a - V - V • (i/V) + cr] Au

- Osn+l + (1 - 9)sn - [a • V - V • (i/V) + a]un. (5.2)

Note that now second derivatives of u are present due to the diffusion operator.
As previously observed in Section 3.4.1.1, Crank-Nicolson, 6 = 1/2, is the only
second-order accurate method. 0 = 1 corresponds to the implicit backward Euler
method, and 8 — 0 is the explicit forward Euler method. For 9 > 1/2, the scheme
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is A-stable. Usually, the Crank-Nicolson scheme is used for true transient problems
where time accuracy is important. The backward Euler or the so-called Galerkin
scheme, 0 = 2/3, may be used to obtain steady-state solutions by means of a time-
marching approach with large time steps (usually called relaxation methods).

Another classical method for transient problems is the Adams-Bashforth method.
This is a second-order accurate explicit method which requires evaluation of the first
time derivative at two consecutive time levels. Its derivation rests upon the forward
Taylor series

A/2

u(tn+l) = u(tn) + &tut(t
n) + =-utt(t

n) + 0(Ai3),

in which the second time derivative is approximated by

thus giving the two-level second-order explicit method

where the time derivative of the unknown u t at a given instant must be replaced using
equation (5. la). Note that the Adams-Bashforth method is not self-starting. The first
step is usually performed using the forward Euler method, preferably with a small
time step.

Note that all of these methods only involve first time derivatives. Thus, they
are easily implemented in conjunction with standard C°-continuous finite elements.
The reader interested in an in-depth discussion of classical time-stepping methods
for convection-diffusion problems may consult the books by Mitchell and Griffiths
(1980) and Gresho and Sani (2000).

Remark 5.3 (Linear multistep methods). Linear multistep methods are pop-
ular because they make use of previously computed values of u and u t at
previous steps. A fc-step linear multistep (LMS) needs un+1~* and u"+l~l,
i = 1,..., fc, to compute un+1. They are defined by the following expression,
see for instance Gear (1971) or Hughes (2000),

k k

' ~* f * '
i=0 i=0

where a, and fii are parameters defining a specific method. The normalization
ao = 1 is standard and the method is explicit if 3o = 0; otherwise, it is implicit.
For instance, taking

ao = — c*i = 1 and 0o = —0, /?i = 0 — 1,

gives the 0 family of methods. Similarly, taking

ao = 1, ai = -1, a2 = 0 and 80 = Q, 8l = -3/2, fa - 1/2
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reproduces the explicit Adams-Bashforth method, see equation (5.3). Usu-
ally, explicit methods are combined with implicit ones, of the Adams-Moulton
family for instance, to produce predictor-corrector schemes.

Unfortunately, the second Dahlquist barrier (see, for instance, Hairer and
Wanner, 1996) states that A-stable LMS methods are at most second-order
accurate. Among the second-order methods, the Crank-Nicolson method has
the smallest truncation error.

5.3.2 Fractional-step methods

Fractional-step (or operator-splitting) methods are widely used for time integration
of unsteady problems. They can take different forms according to the way they
split a complex problem into two or more simpler ones. For instance, in Chapter 4
a fractional-step approach was suggested, in the context of fluid-structure interac-
tion, to separate material (Lagrangian) and convective terms. Another application of
fractional-step methods will be discussed in Chapter 6 to separate the viscous terms
and the pressure/incompressibility terms to properly account for the incompressibility
constraint in the unsteady Navier-Stokes equations.

Here fractional-step techniques are applied to the solution of unsteady convection-
diffusion-reaction problems. In this context, the original problem is transformed
into the sum of a pure convection problem and a diffusion-reaction problem to be
solved in sequence at each station of the time integration procedure. Methods in this
class have been thoroughly studied by the Russian mathematicians Yanenko (1971)
and Marchuk (1982; 1990). In view of the different characteristics of convection
and diffusion operators, operator-splitting techniques allow us to select the most
appropriate numerical algorithms to solve the convection and the diffusion phases.

Consider again equation (5.la) and assume for simplicity that the convection ve-
locity a, the diffusivity v and the reaction a are constant. A class of fractional-step
methods operate at the level of the semi-discrete form, that is, the system of ordinary
differential equations obtained after spatial discretization of (5.la), namely

du , T f- + Lu = f,

where matrix L arises from the spatial discretization of the convection, diffusion and
reaction operators and vector f accounts for the source term. In this case, the splitting
is of the form

^ + (L1 +L2)u = f
at

and is called algebraic splitting, see Quarteroni and Valli (1994).
For instance, Yanenko (1971) proposed a first-order accurate implicit method in

the form of the following algebraic splitting:
..n+l/2 _ ..n
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This method produces a couple of implicit problems, but unconditional stability can
only be guaranteed for cases where both L i and L2 are positive definite matrices.

Other widely used splitting methods are described in the technical literature (e.g.,
Ames, 1992; Mitchell and Griffiths, 1980;QuarteroniandValli, 1994). These include
the method of Peaceman and Rachford

..n+l/2 ..n

At/2

and a similar one by Douglas and Rachford:

un+l/2 _ un

At/2

- L2un+1 = r+1/2 - Lnin+1/2,

At

un+l _ un+l/2

At
L2u

n+1 = L2un.

Other splitting methods operate at the level of the differential operators. They are
best explained by rewriting the governing equation (5. la) in the symbolic form

ut + £w = s, with £ = a - V - V • (3i/V) + a,

and then the convection-diffusion-reaction operator £ splits into a sum of two com-
ponents as follows:

£=£,!+£2 , with £ i = a - V , and £2 = -V • (i/V) + a.

An example of splitting at operator level is described by Donea, Giuliani, Laval
and Quartapelle (1982) who follow Marchuk (1982). They consider a convection-
diffusion problem (a = 0) and split the operator as in the previous equation on a
typical time interval At. Moreover, the source term is associated with the second
step. This induces the following algorithm for each time step:

(vt+&iv = Q in f i x [tn,tn+1[Firststep: {„(*«) = „"
(wt+H2w = s i n f ) x [tn,tn+1[

Second step: < , ,,
\ w(tn) = vn+l

Final update: un+1 = wn+1.

Since the first step represents a pure convection problem, methods for hyperbolic
equations discussed in Chapter 3 can be employed. For instance, the third-order
explicit Taylor-Galerkin scheme (TG3), see (3.42), would produce the scheme

At 2 L*\nlr •
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The spatial discretization of this semi-discrete equation can then be performed with
the standard Galerkin finite element method.

The Crank-Nicolson method can be used for the second step, that is the diffusion
equation. Thus,

Here again, the spatial discretization would be performed by means of the standard
Galerkin method. Donea, Giuliani, Laval and Quartapelle (1982) present a detailed
discussion of the above fractional-step method which confirms its interest for approx-
imating the solution of unsteady convection-diffusion problems.

Note that in the case of operator splitting, the sequential treatment of the convection
and diffusion phases requires a splitting between the boundary conditions to endow
each individual phase of a fractional-step algorithm with consistent boundary data.
For instance, in the convection phase, it is clear that data can only be prescribed on
the inflow portion of the boundary. Fractional-step methods are also sensitive to the
treatment of the source term, see for instance Peraire ( 1986) and Peraire, Zienkiewicz
and Morgan (1986). Another critical issue with operator-splitting methods is the
overall accuracy of the procedure. Most methods are in fact only first-order accurate.
The reader interested in a detailed exposition of fractional-step and operator-splitting
methods is urged to consult the specialized textbooks by Marchuk (1982; 1990),
Yanenko (1971), as well as Glowinski and Le Tallec (1989) and Quarteroni and Valli
(1994).

5.3.3 High-order time-stepping schemes

Unsteady convection-diffusion-reaction problems are more difficult to solve using
high-order time-stepping methods than the pure convection problems discussed in
Chapter 3. The reason is the presence in the governing equation (5. la) of the second-
order diffusion operator. This operator limits one-step time integration algorithms to
second-order temporal accuracy when they are combined with C ° -continuous finite
element approximations. In order to use a standard implementation of C ° finite
elements, time-stepping schemes for convection-diffusion should only involve first
time derivatives. This leads to the two-step schemes presented in Section 3.6.4,
or more generally, to Runge-Kutta methods (Lambert, 1991; Hairer, N0rsett and
Wanner, 1993) or to multistage schemes emanating from the factorization of Pade
approximations to the exponential function (Donea, Roig and Huerta, 1998).

5.3.3.1 Runge-Kutta methods The technical literature contains many refer-
ences to the use of Runge-Kutta time-stepping schemes in connection with finite
element and finite volume algorithms. Only a few representative examples are men-
tioned here. For instance, they can be used to reach a steady solution (the concern
is efficiency and not time accuracy), see Jameson, Schmidt and Turkel (1981) or
Liu and Jameson (1993). lannelli and Baker (1991) use a stiffly stable, second-order
accurate, implicit Runge-Kutta method for Euler and Navier-Stokes aerodynamic ap-
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plications. Tezduyar, Mittal and Shih (1991) and Jiang and Kawahara (1993) employ
a third-order explicit Runge-Kutta method for the finite element analysis of unsteady
incompressible flows. Giles (1997) presents an application of modern stability analy-
sis to the Galerkin formulation of Runge-Kutta methods applied to the Navier-Stokes
equations. In particular, examples of predictor-corrector and explicit Pad e approx-
imations are shown. A fourth-order method is used by Pereira et al. (2001) for a
finite volume solution of the incompressible Navier-Stokes equations. In the context
of nonlinear convection-dominated problems, Cockburn and Shu (2001) review the
development of the Runge-Kutta discontinuous Galerkin methods.

Runge-Kutta methods are multistage methods that only make use of the solution
un at time tn to compute the solution un+1 at tn+1. This is achieved by computing
a number ntg of intermediate values of the time derivative of the unknown u, within
the interval At = tn+1 — tn. The differential equation (5. la) is rewritten as

u t+£(u) = s. or ut = 7(t,u) (5.4)

where the spatial differential operators are defined as

£ : = a - V + < 7 - V - (i/V), and 3(t, u) := s - £(w). (5.5)

Then, the standard form (see Lambert, 1991; Hairer et al., 1993; Hairer and Wanner,
1996) of an ntg-stage Runge-Kutta method is

ntg

un+l = un + Af y^ bii. (5 6a)

ncg

(5.6b)

It can also be written in another convenient and usual form,

(5.7a)

un+i = un + Ai a.. y^n + c.^t ^ un+^ i = l.2,..., ntg (5.7b)

J=l

using the interpretation

In the above relations the step increment is the time increment A£ in view of the time-
dependent problem (5.1) under consideration. The parameters 0 i can be substituted
by a stage counter, although each 0i can be interpreted as un+l3i ~ u(tn+l3i ) and
thus equation (5.7b) gives an approximation of u at an intermediate instant. The
coefficients in (5.6), or (5.7), must verify the consistency conditions
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and they are conveniently displayed as a Butcher array:

fll.l
02,1

«ntg,2 '

a2,ntg

ntg,ntg

Implicit Runge-Kutta methods are those where at least one a^j ^ 0 for j > i. If this
is not the case, the method is explicit.

5.3.3.2 Explicit Runge-Kutta methods It is well-known that ntg-stage ex-
plicit Runge-Kutta methods are of order ntg for ntg < 4. For ntg > 4, ntg-stage
methods systematically have order lower than ntg. For this reason, Runge-Kutta
methods of fourth-order are very popular among the explicit methods. The classical
fourth-order Runge-Kutta method is defined by the following Butcher array:

0
1/2
1/2
1

1/2
0
0
1/6

1/2
0
1/3

1
1/3 1/6

The resulting time-stepping algorithm follows from (5.7) and reads

= u

23 \tn + ^,

At ?

dt,

At un

Remark 5.4 (Stability properties). Explicit Runge-Kutta methods are only
conditionally stable. In application to the modal equation

ut + Xu = 0.

where A denotes a typical eigenvalue, their amplification factor has the same
structure as the corresponding Pade approximation (first row in Table 5.1)

= Rnt AA*).

Their domain of numerical stability in the complex AA£ plane is depicted
in Figure 5.1. The fourth-order method presented previously has interesting
stability properties. The associated absolute stability curve, shown in Figure
5 . 1, is the same as that of Pade approximation R4,0. It cuts the real and imaginary
axes at —2.78 and ±2>/2, respectively. Since the absolute stability region
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Fig. 5.1 Stability domain of explicit Runge-Kutta and Pade" methods.

contains a finite portion of the imaginary axis, the fourth-order Runge-Kutta
method can be used in convection-dominated situations where the problem
eigenvalues are distributed close to the imaginary axis of the complex AAt
plane.

5.3.3.3 Explicit Pade approximations As an alternative to explicit Runge-
Kutta methods, one may consider using a multistage factorization of the explicit Pad e
approximations Rn,o to the exponential function, see the first row in Pade Table 5.1
and set z = &td/dt, see Donea, Roig and Huerta (1998; 2000). They are easier to
implement in conjunction with finite elements due to their simple algorithmic structure
and possess the same properties as their corresponding Runge-Kutta methods, for
instance the same stability domain, if the coefficients in (5. la) do not depend on time.

For the second-order Pade approximation R2,o» a two-stage method can be derived
from the factorization

«(«"+') = u(t") + At « + |te,. + 0(At>) ,

which yields the two-stage (ntg = 2) Lax-Wendroff method

n+l/2 = n nu
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Table 5.1 Pade approximations of the exponential function ez,
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The third-order Fade approximation R^o can also be factorized in the form

£=<*

which yields the three-stage (ntg = 3) method

, fn+l/3 = ,,n , ^

This third-order scheme has been used by Jiang and Kawahara (1993) and by Tezduyar
et al. (1991) in the finite element analysis of unsteady incompressible flows.

Similarly higher-order methods can be developed (for constant-in-time coeffi-
cients). In fact, multistage explicit methods of the Pade family are easily expressed
in the incremental form

i - 2, . . . , n
(5.8)

tg

where 0i = 0, and & = l/(ntg + 2 - i) ,« = 2 , . . . , ntg +1. Note that these methods
can be expressed using a Butcher array:

0
!/ntg

1
ntg — 1

1/2

0
l/ntg 0

n 1 n1 ntg-l U

0 • • • 0
n

1/2
n

0
1
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Then, the time derivative is replaced using the convection-diffusion-reaction equation
(5.la). Finally, as shown in Section 5.4, a weak form of the resulting semi-discrete
system is introduced to serve as a basis for the finite element spatial discretization.

Remark 5.5. Note that although explicit multistage Pade schemes can be writ-
ten using a Butcher array, they are not Runge-Kutta methods. For instance,
one can easily check that the coefficients of the three-stage method do not ver-
ify the required conditions (see for instance Hairer et al., 1993, p. 144). The
factorization of the Taylor series and the subsequent substitution of u t can be
performed if the operators in (5.5) are linear (not dependent on u) and constants
(a, a, v and s are independent of t).

5.3.3.4 Implicit Runge-Kutta methods Implicit Runge-Kutta (IRK) meth-
ods are popular in the ordinary differential equations community (Lambert, 1991;
Hairer and Wanner, 1996). Their elevated cost, when implemented in the context
of convection-diffusion equations, has deterred their use. For each time step the
IRK method requires the simultaneous solution of (5.7b) to determine u n+3i for
i = 1,2,..., ntg, or, equivalently, solution of (5.6b) to determine every t,-. Then,
equation (5.7a), or (5.6a), can be used to compute u n+1 explicitly.

The IRK methods based on Lobatto quadrature are of particular interest for the
time integration of unsteady transport problems, because they include the end points
of the integration interval, namely un+/31 = un and un+dn~'* = un+1. This reduces
the computational cost: the system of equations has one equation less and equation
(5.7a) is verified automatically. They have a maximum order of 2n tg — 2 where ntg

is the number of stages. The first family of such methods is called Lobatto IIIA and
it is based on the following Butcher arrays:

0
ntg = 2 (thus order 2) 1

0 0
1/2 1/2
1/2 1/2

0
1/2

ntg = 3 (thus order 4)

0
1/2
1

0
5/24
1/6
1/6

0
1/3
2/3
2/3

0
-1/24
1/6
1/6

Note that the first row of the matrix in the Butcher arrays is, for Lobatto IIIA
methods, always zero as well as c1, that is a1,1 = a12 = • • • = a1,ntg — 0. Thus,
as expected, the first stage that corresponds to un is not evaluated. Therefore, the
system of simultaneous equations that must be solved at each time step has dimension
ntg — 1. Moreover, the last explicit computation in (5.7a) corresponding to the
evaluation of un+l is also unnecessary because the last row of that matrix is identical
to[b1,b2,...,bntg].
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5.3,3.5 Implicit Pade approximations Lobatto III A IRK methods in the pre-
vious section are closely related to the Pade approximations Rn,n on the diagonal
of Table 5.1. As shown by Donea et al. (1998; 2000), multistage schemes can be
derived directly from the diagonal Pade approximations. They are obtained in the
following compact form:

Aw
WAM t = wuj1, (5.9)

where the unknown AM € Mn ts ~1 is a vector whose dimension varies with the number
of stages, ntg, and the vector Aut is the partial derivative of AM with respect to time,
namely

Aw =

u
,n+03

n+/3nt i

and = <

n+02

n+02Lt
(5.10)

W is an (ntg—1) x (ntg—1) matrix and w an (ntg—1) vector. They are defined below
for two specific cases. As with IRK methods, the time derivatives in (5.9) are replaced
by spatial derivatives using the original differential equation, see equations (5.4) and
(5.5). For instance, in the case of a linear operator £ with constant coefficients and a
source term s, equation (5.9) becomes

W£(AM) = w[sn WAs. (5.11)

The precise definition of AM (recall that AM^ is simply d/\u/dt), As, w and W
depends on each particular method.

As noted earlier, these methods are closely related to Lobatto IIIA IRK meth-
ods. The noticeable difference is that, while the present scheme is based on non-
overlapping step increments, the corresponding Runge-Kutta method employs total
increments. This implies that a linear correspondence exits between both techniques,
namely

u
,n+f33 _ ,,n

r x u

1 1

: ' • • 1

0\

\1 V

,n+03

- u'
-un+

This minor difference does not affect linear problems discretized with a Galerkin
formulation. However, as shown in Section 5.4.6.5, it has major consequences as
regards numerical stability when implemented in connection with stabilized spatial
formulations.



222 UNSTEADY CONVECTION-DIFFUSION PROBLEMS

We shall illustrate the construction of multistage Pade" schemes with reference to
the second-order approximation R1,1 and the fourth-order approximation R2.2, for
which equation (5.9) takes the following particular forms:

Second-order Pade approximation: R1,1 (Crank-Nicolson)

= w = l.
£•*

Note that in this case ntg = 1 and, consequently, the vectors and matrix in (5.9)
become scalars.

Fourth-order Fade approximation: f?2,2

/ W"+!/2 -Un \ j Sn+l/2 -Sn \

~ \un+1 - wn+1/2J ' ~ 1 sn+l - sn+1/2J '

Both equations (5.9) and (5.1 1) with the corresponding initial and boundary con-
ditions define a problem in strong form, which must be solved at each time step. For
simplicity, the truncation errors are not explicitly shown in (5.9) and (5.1 1). Note,
however, that if these truncation errors are accounted for, equations (5. la), (5.9) and
(5 . 1 1 ) are equivalent, and the exact solution verifies the new strong form. The spatially
continuous differential equations, (5.9) or (5.1 1), are the basis of the finite element
discretization.

5.4 SPATIAL DISCRETIZATION PROCEDURES

5.4.1 Galerkin formulation of the semi-discrete scheme

Here, we present the Galerkin formulation associated with the strong form (5.1) of
the unsteady convection-diffusion-reaction problem. As in Section 3.4.2, Galerkin
can be applied directly on the differential equation (5. la), or on the time discretized
equations (5.2), (5.3), (5.8), (5.7) or (5.9). For completeness, we present the semi-
discrete scheme first.

The space of weighting functions denoted by V satisfies the homogeneous bound-
ary conditions on TO- The functions, w, in V do not depend on time. As in Section
3.4.2.1, the time dependency of the approximate solution u can be translated to the
trial space St , which varies as a function of time,

St ••= {u\u(-,t) enl(^},te [ Q , T ] a n d u ( x , t ) = UD f o r x € TD} .

As usual, trial solutions a priori verify Dirichlet boundary conditions. The weak form
of the initial boundary value problem (5.1) is defined as follows: given s. u r>. h. uf
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and UQ, for any t 6 [0, T] find w(x, t) € <$*, such that for all w e V

(w.Uti +c(o; iy,w) -\-CL\w,u) 4- \w,(ru} =• ( w , s ) + \w,h)^ . (5.12)\ ' «•/ v > ' / \ ' / v7 / \ > / v ' / l ^ r

We recall the definitions already presented in (2.6), namely

a(w,u) = I Vw-(vVu}d$l, (w,s) = I w s d f t ,
7o -/Q

c(a;w,w) = / w(a-Vu)dQ,, (w,ti)r = / whdT.
JQ A -/rN

The spatial discretization by means of the Galerkin formulation consists of defining
two finite dimensional spaces Sh and Vh, subsets of s and V, see Section 3.4.2.2.
Then, the semi-discrete Galerkin formulation is obtained by restricting the previous
weak form to these finite dimensional spaces.

The system of ordinary differential equations is obtained following the same ratio-
nale as in Section 3.4.2.2. Recall that the time dependence of the solution, u h(x, t), is
taken into account by the nodal values of the unknown. The shape functions N A(x)
do not depend on time. Thus, (2.10) becomes

uh(x,t}= V NA(x)uA(t)+ V NA(x)uD(xA,t),

where, as before, r? is the set of global node numbers in the finite element mesh and
TJD C r? the subset of nodes belonging to the Dirichlet portion of the boundary, F £>.
The test functions are defined as before, see (2.11), wh € Vh = span^,^^ {NB}.

Finally, the usual assembly process delivers the semi-discrete system of ordinary
differential equations

Mu + (C +K + crM)u = f, (5.13)

where, for simplicity, we have assumed that the reaction, a, is uniform and constant.
Note that vectors u and u contain, respectively, the nodal values of the unknown u
and of its time derivative, while M, C and K are, respectively, the consistent mass
matrix, the convection matrix and the diffusion matrix. These matrices are obtained
by topological assembly of element contributions as follows:

Me
ab=

C-ACCe Ce
ab= f Na(a-VNb)dSl (5.14)

Ja*

K = ACKe Ke
ab = t VNa .(i/VAr6) dfi

Jn*

where A denotes the assembly operator, 1 < a, b < nen and nen is the number of
element nodes. The r.h.s. vector, f , considers the contribution of the source term,
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s, the prescribed flux, h, and the Dirichlet data M£>. It results from the assembly of
nodal contributions of the form f = A f e and

where ue
Db(t) = uo(xb, t) if UD is prescribed at node number 6 and zero otherwise.

5.4.2 Galerkin formulation of 9 family methods

Which discretization is performed first is not an issue for linear spatial operators with
constant coefficients and a Galerkin formulation. The time discretized equations,
(5.2), (5.3), (5.8), (5.7) or (5.9), do have a truncation error. However, if the temporal
truncation error is neglected, these equations can be interpreted as a spatial differential
operator. In fact, they represent a strong form that must be solved at each time step.

Under this rationale it is easy to determine from (5.2) the variational form associ-
ated with the 9 family methods:

(w, —^} + 9 [c(a; w, Aw) -I- a(w, Aw) + (w, aAw)]

= -[c(a;w,wn) +a(w,un) + (w,aun)}

+ (w,6sn+l + (l-0)sn) + (w,9hn+1 +(l-0)hn). (5.15)

Note that in the previous equation the unknown Au appears in the same three terms
as in the l.h.s. of (5.12). Thus, after spatial discretization, we obtain the same mass,
convection and diffusion matrices (scaled by If At and 9) as in (5.13) and (5. 14). The
r.h.s. terms also include the influence of the Neumann boundary condition, h, and the
source term, s. These terms are linearly interpolated between time t n and t n+1 . It is
important to note that time is already discretized in equation (5.15). Therefore, the
solutions of (5. 1 5) are first or second-order approximations in time depending on the
value of 9.

In order to analyze this family of methods we follow the methodology proposed
in Section 3.5.1, which already included diffusion and reaction. Thus to determine
the influence of the numerical scheme on a Fourier mode of wavelength 1/k one in-
troduces the dimensionless wave number, £ = h k. Recall the dimensionless scalars:
Courant number C = aAt/h, diffusion number d = (*/A£)//i2, and dimensionless
reaction r = a At. Then, we follow the same steps of Section 3.5.2; the discrete
equation obtained at an interior node j with the 9 family method is determined from
(5.15) (recall that there is no source term, s = 0, and we consider an interior node).
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The fully discrete equation can be written from Table 3.1 as

which allows us to find the equation that modifies each Fourier component,

(MO ~ 0(£(£><*) - A(£,C) - rMO))(w"+1 - "")

Thus the numerical amplification factor for the convection-diffusion-reaction equa-
tion and a Galerkin formulation is

r = Mfl - (1 - WKfod) - .4(6 C) ~
' ) - rMO) ' ^

Using the last column in Table 3.1 one can explicitly determine the dependence of
Go on (7, d, r, 0 and £. Then stability can be studied for each value of 0 verifying the
condition \Go\ < 1- In particular for 0 > 1/2 one can verify that the amplification
factor is always (for 0 < £ < TT and C > 0) less than one. Thus, Crank-Nicolson
and backward Euler are unconditionally stable. Figure 5.2 plots \G #| as a function
of £ for different values of the Peclet, Pe = C/(2d), and Courant, C, numbers. The
curves are plotted in polar coordinates, the angle is £ and the radius is \Go\- The
unit radius circle is also plotted. Thus when a method produces a radius larger than
one it is unstable. Note that as expected the Euler method is conditionally stable,
see Remark 5.6. The stability results for the pure diffusion case are well-known (see
Wait and Mitchell, 1985) and can be determined from (5.16),

. 1 1 2 ( 2 + cos(Q)
- 6(1 - 20) - 6(1 - 20) 1 - cos(£) "

Remark 5.6 (Stability range of explicit methods). In pure diffusion in ID,
the forward Euler method is stable for

h2 1
A i < — or d<-.

6z/ 6

The method is unstable in pure convection if a centered (Galerkin) approxi-
mation is used for the convective term. When an upwind approximation is
employed, the method is stable provided At < h/a (Courant condition). In
convection-diffusion, the stability condition depends on the value of Pe:

C<Pe/3,

C<l/Pe.
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6=0 6=1/2 6=1

1 -1

Fig. 5.2 Stability of the 9 family methods for different values of Peclet and Courant numbers.

Stability of the second-order Adams-Bashforth method is governed by the same
type of criteria, but its stability range is only half that for the Euler method. The
leap-frog (LF) method is unstable in pure diffusion, and it is also unstable in pure
convection if an upwind approximation is used for the convective term. When a
centered approximation is employed, the LF method is stable under the Courant
condition At < h/a. See, for instance, Gresho and Sani (2000) for additional
information on the stability of explicit methods in convection-diffusion.

The accuracy of these methods can be evaluated by means of (3.36). Figure 5.3
shows relative errors at different Peclet numbers for numerical damping, | G\/\ Gex|,
and phase error, arg(G)/arg((7ex). From a precision point of view only the range
0 < £ < fl"/4 is of interest. Note that backward Euler is as expected overly diffusive,
1 G\/\ Gex| < 1. Moreover, reasonable phase errors require small Courant numbers.

Crank-Nicolson shows better accuracy due to its second-order accuracy, see Figure
5.4. However, its excellent behavior in damping for high values of Pe degrades as
the diffusion coefficient and the Courant number increase. Moreover, its phase error
is always important for moderately high values of the Courant number. For both
methods the introduction of a reaction does not drastically affect these conclusions.

Apart from stability and accuracy (in time) we should recall the intrinsic deficien-
cies of the Galerkin formulation in the presence of boundary layers. As shown in the
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Fig. 5.3 Accuracy properties of backward Euler at different values of the Peclet number.
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Fig. 5.4 Accuracy properties of Crank-Nicolson at different values of the Peclet number.
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07 08 01

Fig. 5.5 Model problem for Crank-Nicolson at Pe = 0.5 (left) and Pe = 5 (right).

examples, if a smooth function is transported far from Dirichlet boundaries Galerkin
will produce reasonable results. The previous accuracy analysis can be confirmed
and, as seen in Chapter 3, Crank-Nicolson performs better (both in numerical damp-
ing and phase) than lower-order methods. Nevertheless, if the solution is confronted
with Dirichlet boundary conditions developing a boundary layer, spatial instabilities
(already seen in Chapter 2) will pollute the solution and spatial stabilization is re-
quired. A simple example using a uniform mesh of linear elements illustrates this
point. It is the transient version of the example presented in Section 2.2.2, namely

+aux - vuxx = 1
=Q and u(l

w ( z ; 0 ) = 0

for (x.t) e ]0. l[xR+,
(5.17)

Figure 5.5 compares exact solution with results of the Galerkin/Crank-Nicolson for-
mulation for different values of Pe and different instants.

5.4.3 Galerkin formulation of explicit Pade schemes

The Galerkin formulation of multistage explicit Fade methods, see (5.8), is

(w,un+0i) = (w,un) + Pi

for i = 2. . . . . ntg -I- 1. Recall that the first stage is trivial, un+^ = un, thus 3\ = 0,
and that & = l/(ntg + 2 - i), for i - 2. . . . . ntg -I- 1.

The amplification factor associated with these schemes is evaluated by means of
the Fade approximations presented in Table 5. 1 . The first row in this table defines the
amplification factor:

, C, d, c, r) = FL 0(2) with z :=
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Fig. 5.6 Stability of multistage explicit Pade methods for different values of Peclet, Pe, and
Courant, C, numbers.

These explicit methods are conditionally stable. Figure 5.1 shows the stability
regions. Figure 5.6 presents the absolute value of the amplification factor in polar
coordinates (£ angle and \G\ radius) for different values of Pe and C. Note that
diffusion strongly influences stability. For instance, the fourth-order method is stable
for C = 1.5 at high Peclet numbers but becomes unstable as Pe decreases. This
generates serious difficulties when explicit multistage methods are implemented in
problems where convection is dominant in a region while diffusion dominates another,
or simply when non-uniform meshes are needed due to geometrical requirements.
From an accuracy point of view the same conclusions of Chapter 3 can be drawn
here: higher-order methods are more accurate, in particular, with respect to phase
errors.

5.4.4 Galerkin formulation of implicit multistage schemes

The time discretized equations (5.9) represent a strong form that must be solved at
each time step. Note that any Runge-Kutta method, see (5.7), can also be expressed
in the same form (with vectors and matrices of dimension ntg + 1). The weighted
residual form is

( AlA\ / ^ ,
10,-—J - (w,WAu t) = (w ;w<).

where w 6 [V]n, n = ntg — l, for implicit multistage Pade schemes and n = ntg + l,
for standard implicit Runge-Kutta methods. Recall that [V]n imposes homogeneous
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conditions along the Dirichlet boundary. The solution Au € [S]n and verifies the
Dirichlet boundary conditions.

In the case of a linear operator £, see (5.5), with constant coefficients and a source
term s, see (5.11), the previous weighted residual equation can be rewritten as

(w, -—J 4- c(a; w. WAu) 4- a(w, WAu) 4- (w, <rWAu)
V Z_\ I/ f

= (w, wsn + WAs) 4- (w, whn + WA/i)

— (c(a;w,wun) +a(w.vfun) 4- (w,a-wun}j.

From this weak form and Table 3.1 the equation which modifies each Fourier
component is readily obtained

\

Aw

Now the unknown is a vector with n = ntg — 1 components for implicit multistage
schemes. The amplification is the relation between the solution at tn+l and tn at
a given interior point. To determine the numerical amplification factor, given the
definition of Au, see (5.10), the following steps are necessary:

1. Solve the linear system of equations for z = ( z 1 . z , . . . . , zn,g-i )T'-

(A<(0 1 - (1C(S, d) - A& C) - rM(t})w}z

2. And finally determine the amplification factor as

G(£,C,d,r) = 1 + z1 +z2 + --- + zn tg-i.

Remark 5.7. This procedure to determine G is necessary for the stabilized
methods shown next. In the case of a Galerkin formulation, similarly to the
previous section, the Pade Table 5. 1 allows us to directly compute the amplifica-
tion factor. In this case implicit multistage schemes correspond to the diagonal
of Table 5.1 and the amplification factor can be readily obtained as

/->,^ ^ j N « ^ -uG(t,C,d,c,r) = Rnt9-i,ntg-i(*) with* :=

These methods are unconditionally stable. They allow us to use high-order time-
stepping schemes. Thus, accuracy can be improved drastically (obviously, for the
solvable frequencies 0 < £ < ?r/4). Figure 5. 7 shows relative errors in amplitude and
phase for the fourth-order method, R 2,2- But as previously observed for the 9 family
of methods, see Section 5.4.2, a Galerkin formulation presents spatial instabilities in
the presence of boundary layers. The problem stated in (5.17) is solved again with a
uniform mesh of 10 linear elements, see Figure 5.8. Since the R 2.2 method has twice
as many nodal unknowns, the Courant number is increased to C — 3.
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Fig. 5.7 Accuracy properties of implicit multistage R2,2 at different values of Pe and C.
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Fig. 5.8 Model problem for a Galerkin formulation of implicit multistage

5.4.5 Stabilization of the semi-discrete scheme

As amply discussed the Galerkin formulation lacks sufficient spatial stability when
convective effects are important in the presence of boundary layers. In order to
stabilize the convective term in a consistent manner, that is ensuring that the solution
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- - T2=At/(2+2O4d)
T^h/aaMI +9/Pez)1/2 for At=~

. . T2=(h/2a)/(1+1/Pe)fofAt=~

Fig.5.9 Evolution of r as A t varies for the particular case: a = l,i/ = 10 2 and/i = 1/10.

of the differential equation is also a solution of the weak form, Hughes and co-
workers have proposed several techniques described in Chapter 2. These methods
were subsequently extended to transient problems integrated with second-order time
schemes or treated using space-time formulations.

A stabilized formulation of the convection-diffusion-reaction problem (5.1) can
be stated as follows:

(w,ut +a(w,u) Qe = (w,s)
e=\

where the perturbation operator 7 characterizes the stabilization method, see Sec-
tion 2.4. The stabilization term involves the residual 3?(u) = u t + a • Vw + cru —
V • (y Vu) — s of the governing equation, thus giving in principle a consistent for-
mulation. Note that the residual includes the time derivative ut of the unknown. This
will result in a rather cumbersome implementation, except for the 9 family of methods
where ut is replaced by (un+1 - un)/At, or for space-time formulations.

Remark 5.8 (The transient stabilization parameter). When we are concerned
by the steady solution it is usual to implement the parameters presented in
Section 2.4.3. But if the transient solution is of interest we use the convection-
diffusion-reaction extensions of the parameters described in Section 4.4.2.3.
That is, for the 9 family of methods, 6 e]0,1], following Shakib et al. (1991)

-1/2

or from Soulaimani and Fortin (1994), see also Codina (2000),

.I 2a 4i/

Figure 5.9 shows, for 0 = 1/2, the variation of r with At in a particular case.
Note that in the limit At = oc both definitions are similar (the limits coincide
in pure convection), but one definition reaches the limit much more rapidly.
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5.4.6 Stabilization of multistage schemes

When accuracy requires us to go beyond second-order schemes and higher-order
time integration schemes are employed, the standard stabilization of the semi-discrete
equations is not trivial. In the context of transient problems, see Chapters 3 and 4,
least-squares formulations can also be used to stabilize pure convection problems, see
the appendix at the end of this chapter. However, their direct extension to convection-
diffusion problems is also not trivial because of the presence of the second-order
operator (the diffusion term). Huerta and Donea (2002) propose to combine spatial
stabilization techniques with high-order implicit time-stepping schemes. Moreover,
a least-squares (LS) formulation is also presented for these high-order time schemes
combined with C° finite elements (in spite of the diffusion operator and without
reducing the strong form to a system of first-order differential equations). Reference
will be made to three stabilization techniques, namely, the streamline-upwind Petrov—
Galerkin (SUPG), the Galerkin/Least-squares (GLS), and the sub-grid scale (SGS)
methods, see Section 2.4.

In order to have a consistent stabilization of time discretized equations, such as
those resulting from multistage time schemes, a residual must be defined. The resid-
ual, in the present case, is clearly chosen after time discretization. Thus, from the
strong form (5.9) one gets

A ii
ft(Ati) := -r- - W Aut - w <.

In order to better visualize the spatial differential structure of the residual #( AM), this
equation is rewritten for the particular case of linear spatial operator £ with constant
coefficients, that is from (5.11),

A 7j

ft(Au) = -r- + W£(Aw) - w[)n - £(wn)] - WAs, (5.18)
l~\ v

where, from the second term on the r.h.s., one can observe that the operator £ =
a • V - t> V2 + a acts on each component of At*.

The consistently stabilized weak form of the time discretized problem is given by

Stabilization term

Here again, the stabilization term is added to the Galerkin weak form. It contains the
intrinsic time scale matrix r because (5.11), or (5.18), is a system of equations. The
operator 7 characterizes the stabilization technique (i.e., SUPG, GLS, SGS or LS).

Remark 5.9 (On the stabilization matrix r for multistage schemes). When
the convection-diffusion-reaction operator £ = a • V - v V 2 + a is replaced
in the multistage form of the time-discretized equation, that is in (5.11), the
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system of equations that must be solved at each time step, namely

— + W(a • VAn - z/V2Au + aAw)

= w[sn - (a • Vun - vV2un + awn)] + WAs,

can be reinterpreted as a system of steady convection-diffusion-reaction equa-
tions.

In this case, convection is controlled by a jW, i = 1, . . . , nsd (recall the Ja-
cobian matrices in Section 4.4.2.3), the diffusion matrix is i/W and the reaction
matrix, I/ At + crW, includes the contribution form the transient term. Thus,
in ID, the stabilization matrix can be computed as

ww

= At [W-1 + (2(7 + 4d + r)l] ~TW~1 ,

when the analysis of Soulaimani and Fortin (1994), see also Codina (2000),
is particularized in this case. Note also that such a definition of the intrinsic
matrix T is also valid for the scalar case and generalizes the previous one, see
Remark 5.8.

In particular, for implicit Pade approximations, see the definitions of W in
Section 5.3.3.5, W"1 = |( _5

13 J ) for R2,2.
Finally, note that other definitions for r can also be used. For instance, if

the steady solution is our main interest, as noted in Remark 5.8, it is usual to
implement the parameters presented in Section 2.4.3, that is

see the final example in the appendix at the end of this chapter.

Remark 5.10 (Consistent stabilization). The stabilization term involves the
residual, which includes the second-order term V 2

u . When linear finite ele-
ments are used this term vanishes or is largely under-represented, with the cor-
responding degradation in the consistency of the stabilized formulation. The
lack of consistency leads to errors of order O(r], apart from the errors inherent
in the time integration scheme.

In order to keep the convergence rates in time, several possibilities can be
useful. The stabilization parameter r can be defined to be asymptotically of
order 0(At2n). That is, a specific intrinsic time r should be designed for each
one of the time integration schemes. Another possibility is to include flux jump
terms across the element boundaries in the stabilized formulation to take into
account the neglected terms, see Tezduyar and Osawa (2000) for details. In
fact, Jansen, Collis, Whiting and Shakib (1999) show that when linear finite
elements are used the lack of consistency due to the neglected terms leads also
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Fig. 5.10 Convergence results: h = 0.001, a = 1, i/ = 10~2 (left) and v - 10~4 (right).

to reduced convergence in space. For linear finite elements, they propose a
global reconstruction of second derivatives. This method recovers the ability to
approximate the residual in the stabilization term yielding a better consistency,
through an iterative process. However, the increase in the computational cost is
not negligible: a system of equations with global mass matrix must be solved
at each iteration.

The use of high-order finite elements, such as quadratic elements, allows
the inclusion of second derivatives of the approximation in the residual in the
stabilization term, and thus consistent stabilized formulations can be defined.
However, the computational cost and the implementation difficulties are highly
increased due to the computation of second derivatives of the element mapping
(see Jansen et al., 1999).

A numerical example is considered in order to experimentally assess the
need for considering second derivatives in space. We solve the ID convection—
diffusion equation with constant coefficients,

ut+aux = vuxx, (x.t) € ]0. 2[x]0,1[,

with homogeneous Dirichlet boundary conditions. The initial condition, at
t = 0, is chosen such that the analytical solution is known

where XQ =• 0.35 and er0 = 0.05. Figure 5.10 shows the evolution of the error
against the time step for linear finite elements with element size h — 0.001,
and for two different values of the diffusion parameter v. The error is evaluated
in the £2(Q) norm. Results are shown for Galerkin, Gal, and SUPG with
Crank-Nicolson, R I ; I , and a fourth-order Pade scheme, R2,2- In the stabilized
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computations second derivatives are neglected. When a Galerkin formulation is
used convergence rates are as expected. However, when the SUPG formulation
is used, the lack of consistency due to the neglected terms leads to errors of
order O(T). For, v = 10~2 the intrinsic time r is small enough so that the effect
of this O(r) error is negligible in comparison with the truncation errors of the
Crank-Nicolson, R1,1, time-stepping scheme and almost negligible with the
R2,2 scheme. However, for the convection-dominated problem with v = 10 —4,
the error O(r) drastically reduces the convergence rate: the error is of order
O(r) when the truncation errors of the time-stepping schemes are small enough.
This is obviously more important in high-order schemes and its importance may
be unnoticed in first- or second-order schemes. The intrinsic time t is computed
using the formula proposed by Shakib et al. (1991), see Remark 5.8. See also
Huerta and Fernandez-Mendez (2003) for more details.

5.4.6.1 Streamline-upwind Petrov-Galerkin stabilization The SUPG sta-
bilization technique is defined by taking

?(w) := W(a • V)w. (5.20)

Note that matrix W, which affects the convection term in (5.18), induces a non-
scalar stabilization that is, each equation of the multistage time scheme is affected
by different coefficients. The weak form for the SUPG method is obtained after
substitution of the perturbation operator (5.20) in equation (5.19). The non-symmetric
structure of the stabilization term induces some technical difficulties in the stability
analysis of the SUPG method. This is avoided in the GLS stabilization technique,
because it introduces a symmetric stabilization term in a consistent manner.

5.4.6.2 Galerkin/Least-squares stabilization The need for a previous time
discretization is clear in this method. The GLS stabilization uses as perturbation
operator T the spatial differential operator of the strong form, which in this case
is affected by the time discretization. Note that the present approach differs from
the standard space-time GLS formulation: no time derivatives appear in 3* and thus
there is no need for multicorrector algorithms (see Shakib and Hughes, 1991; Codina,
1998). In the case of a linear convection-diffusion-reaction equation with constant
coefficients, from (5.18) one deduces the operator T, namely

7(w) := ̂ - + W£(w). (5.21)

From a practical point of view there is no major difference between SUPG and
GLS methods. Note that both methods are not identical, as in steady problems,
for convection-diffusion (no reaction) and with linear elements (the second-order
derivatives are zero in the element interiors). Moreover, the qualitative influence of
each term in the definition of 3>, equation (5.21), may be interpreted as follows:

3>(tu) - -^- + W£(t0) = ^- + W[(a- V)ti;- V-(i /Vw)+ aw}.
i_A t £_A L ^̂ «™™™B̂ ^̂ ^̂ ^̂  t̂aMHBŴ ^̂ ^̂ ^̂ ^̂  ~^Vx-v~' supG 0 Galerkin

Galerkin
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The first term is a Galerkin weighting, the second term corresponds to the SUPG
stabilization, the third term is zero for linear elements, and the fourth term is also a
Galerkin weighting. Thus, for linear elements and a constant positive reaction, GLS
is SUPG with the Galerkin term weighted 1 4- r(Ccr + 1/Ai) times more (with C
a constant related to W). This implies that the instabilities introduced by Galerkin
are slightly amplified in GLS compared with SUPG. This minor problem of the GLS
stabilization technique is overcome in the simplest version of the sub-grid scale (SGS)
method, see the next section.

In the case of the nonlinear convection-diffusion-reaction equation it is helpful
to define the quasi-linear operator related to (5.5), see for instance the discussion by
Hauke and Hughes (1998). This quasi-linear operator is then used in (5.21). Note,
finally, that the stabilization term is symmetric but the complete weak form, that is
(5.19) with (5.21), is in general non-symmetric.

5.4.6.3 Sub-grid scale Stabilization The simplest version of the SGS sta-
bilization assumes that the perturbation operator CP(iw) is minus the adjoint of the
operator used in the GLS stabilization, that is

71) *?/?
^(w) := --~- - W£*(w) = -— + W[(o • V + a}w + V • (i/Vw)], (5.22)

<L™A(/ £—\L

where £. * is the adjoint operator of £. Following the same rationale as in the previous
section to qualitatively determine the influence of the Galerkin term in SGS compared
with SUPG, one gets that in SGS the Galerkin term is weighted 1 - r(Ccr + I/ At)
times more than in SUPG. Thus it has less influence than in SUPG and GLS.

5.4.6.4 Least-squares stabilization The classical implementation of a stan-
dard LS formulation for the convection-diffusion-reaction problem (5.1) requires
us to work in W2, unless a mixed LS formulation is used (see Park and Liggett,
1990; Carey, Shen and McLay, 1998). In fact, the least-squares minimization of the
square of the residual of the governing equation invariably includes second spatial
derivatives, thus requiring continuity of the unknown itself and of its first derivative.

In this section, an alternative procedure is proposed, which allows the use of stan-
dard C° finite element interpolation and test functions. Furthermore, the proposed
method does not increase the number of nodal unknowns (this is the case for a mixed
formulation that yields a system of first-order equations or for higher-order interpo-
lation methods). A standard LS formulation directly uses the spatial strong form to
construct the integral equation. Here, since time discretization is already performed,
equations (5.9) or (5.11) are used. Consequently, one gets the integral form

(^+W£(«»),B(Au)) -0, (5.23)

where w and Au are in subspaces of [%2]nt9~1. However, an "equivalent" form
following the same rationale as for standard stabilized methods, see equation (5.19),
can be devised. It is equivalent in the sense that its unique solution is also the unique
solution of (5.1) and also the solution of (5.23). The first argument in (5.23) is split
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by linearity and the term containing L(w) is only evaluated on the element interiors,
namely

e =0. (5.24)

Now the interpolation and test functions can be taken in a subspace of [H. l+]n^~l,

ft1 c nl+ := {w e nl(ty I W|QC e ^2(ne) for all element IT} C H2.

Thus, standard C° finite elements can be used. This approach can also be viewed as
a standard stabilization technique: the first term accounts for the Galerkin part of the
weak form, and the second one introduces the desired stabilization with the following
definition of the operator <P(w) and the intrinsic time r:

r:=&t and 7(w) := WL(w). (5.25)

In fact, the GLS formulation so-called "neglecting the inertia term" (i.e., w/dt is
neglected) is used in common practice. It corresponds to the same perturbation
operator (previous equation) and uses the standard r instead of Af .

5.4.6.5 Accuracy properties The Fourier analysis described in Section 5.4.4
for the Galerkin formulation can be repeated for each stabilized technique. For brevity
we only present the GLS case; Huerta, Roig and Donea (2002) show further details.
The equation associated with the GLS stabilization technique for a typical Fourier
mode corresponding to a dimensionless wave number £ is

J J

, C)(WT - W) - rA4(e)(WT + W)

Au

C)-rA«0]

] Jti" w.

Note the nonlinear dependence on W.
Recall that the intrinsic time scale can be defined in various ways, see Remark 5.8,

although no major differences are observed for the usual definitions. Figures 5.11 and
5.12 show the relative errors for the numerical damping, | G| / | Gex|, and the phase
error, arg(G) / arg(Gex), for different values of the Peclet number, Pe = C/(2d). All
the curves are plotted in polar coordinates, the angle is f and the radius is the relative
error. From a precision point of view only the range 0 < £ < ?r/4 is of interest.
Note that for Crank-Nicolson, Figure 5..11, the Courant numbers employed are 0.75,
1.5 and 3. For R2<2 larger values of the Courant number (1.5, 3 and 6) are used to
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rg(G)/arg(Gex)

Fig. 5.11 Accuracy properties of Crank-Nicolson (R1,1) with GLS stabilization: relative
errors in amplitude and phase for r = 0 (left) and r 0.5 (right) and different values of Pe.
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Fig. 5.12 Accuracy properties of Ra,2 with GLS stabilization: relative errors in amplitude
and phase for r = 0 (left) and r = 1 (right) and different values of Pe.

highlight its range of precision which must compensate its extra cost (double number
of unknowns per node).

Only the GLS stabilization results are shown, the other stabilization techniques
present little differences. The LS formulation introduces, as expected, more numerical
diffusion for R2,2. Moreover, it is only noticeable in pure convection (Pe = 0) and
this effect is beneficial in the presence of reaction. The phase accuracy is also affected
by the LS stabilization but this only occurs for low Peclet numbers.

One can observe that, as expected, the stabilized methods introduce numerical
damping for high frequencies (£ close to TT), which cannot be properly represented on
the discrete mesh. Recall that Galerkin methods for pure convection do not introduce
any numerical damping when combined with diagonal Pade approximations. More-
over, from an accuracy point of view (i.e., for dimensionless wave numbers such that
0 < C < 7r/4), the response (for different Peclet, Courant and reaction values) is
quantitatively the same as in the Galerkin formulation. Thus, the stabilization pro-
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IRK6

Fig. 5.13 Modulus of the amplification factor for stabilized Pad£ (Rn,n) and Lobatto IIIA
implicit Runge-Kutta (iRKn) methods at different values of the Peclet number: fourth-order
methods with LS (left) and sixth-order methods with GLS (right).

cedure introduces numerical diffusion where it is needed and does not compromise
the accuracy. Moreover, from the point of view of the phase errors, the stabilized
methods show a behavior identical to the Galerkin formulation. That is, phase errors
are drastically reduced when the order of the temporal approximation is increased.

The reaction only influences the accuracy of the damping response; only for very
large values of the reaction is the phase accuracy moderately degraded as r increases.

An important point to be made in concluding the accuracy analysis is that the
use of non-overlapping increments in the multistage time scheme preserves uncon-
ditional stability when the method is combined with stabilized spatial formulations.
By contrast, Figure 5.13 shows that the classical, fourth-order accurate, Lobatto IIIA
implicit Runge-Kutta method combined with the LS stabilization loses stability for
moderate to low Peclet numbers. It also shows that the sixth-order accurate Lobatto
IIIA implicit Runge-Kutta method loses stability in pure convection when combined
with the GLS stabilization. This is not the case for the corresponding multistage
schemes derived from Pade approximations.

Now the stabilized formulation can be used in the model problem defined in (5.17)
to preclude the usual global Galerkin instabilities. Figure 5.14 presents the results for
Crank-Nicolson stabilized with SUPG, GLS, SGS and LS. In this case the Courant
number is chosen equal to one because as seen in Figure 5.11 this value produces
accurate results. Similarly, Figure 5.15 presents the results at the same instants for
the stabilized implicit multistage Pade of fourth order, R2,2- This scheme presents
reasonable accuracy properties up to C = 3, see Figure 5.12. In this examples we
use the definition of stabilization parameter for Crank-Nicolson proposed in Remark
5.8, and the definition of stabilization matrix for R2,2 the given in Remark 5.9.

Note first that the solution is stabilized: oscillations, when they exist, are confined
to the boundary layer and do not pollute the solution everywhere. Second, as already
discussed in Section 2.4 (see Figure 2.14), the different stabilization (SUPG, GLS
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SGS .LS
Fig. 5.14 Model problem with stabilized Crank-Nicolson and (7 = 1.

and SGS) techniques weight more or less the Galerkin term and thus the oscillation at
the boundary layer is more or less amplified. Finally, these examples also show that
LS stabilization techniques are more diffusive than SUPG, GLS or SGS. Moreover,
by definition, see (5.25), the added diffusion is controlled by the time step (r = Ai).
Therefore, the LS solution introduces more or less diffusion depending on the imposed
Courant number.

5.5 STABILIZED SPACE-TIME FORMULATIONS

We conclude the discussion of spatial discretization procedures mentioning that sta-
bilized methods for transient convection—diffusion-reaction can easily be extended to
the space-time domain. Methods in this class were described for pure convection in
Section 3.10 and we follow the notation introduced there. To give an example in the
present context we consider the space-time Galerkin/Least-squares formulation, see
Section 3.10.3 and in particular equation (3.65). We assume homogeneous Dirich-
let boundary conditions. Due to the presence of the diffusion operator, least-squares
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Fig. 5.15 Model problem with stabilized R2,2 and C = 3.

0.8 1

terms are again acting in element interiors only and the weighted residual formulation
becomes: for n = 0, 1, . . . . nst - 1, find uh e S% such that for all wh e Vj

ff
JjQ"

[f
JJQ"

(wt a

(ut a auh - V

f
7n

= 0, (5.26)

with uh(t^_) = Uo. The last integral is the jump condition. The third integral is
the least-squares operator and parameter r is the least-squares metric. Shakib and
Hughes (1991) perform a Fourier stability and accuracy analysis of the space-time
GLS method for constant-in-time and linear-in-time approximations.
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5.6 SOLVED EXERCISES

5.6.1 Convection-diffusion of a Gaussian hill

The problem consists of solving the homogeneous linear convection—diffusion equa-
tion on the ID domain ]0,1[ with the initial condition

where £0 = 2/15 and I — 7 \/2/300, and with boundary conditions: u(Q,t) = 0, and
w(l, t) = 0. The grid Peclet number is first taken as Pe = 1 and then increased to
Pe = 5 and finally to Pe = 100. The convection velocity is a = 1. The problem is
solved using a uniform mesh of linear elements of size h = I/ 150 until time t — 0.6.
The exact solution is given by

Galerkin and Crank-Nicolson. We first want to highlight the fact that linear finite
elements in the standard Galerkin formulation do not ideally combine with the second-
order Crank-Nicolson time-stepping method in highly convective situations. The
results reported in Figure 5.16 for a Courant number C = 1 show that the second-
order time scheme performs well at low and moderate values of the Peclet number,
but exhibits significant phase errors when the Peclet number is further increased.
Moreover, the situation becomes worse when the time-step size corresponds to a
Courant number larger than one, see the results for C = 1.5 and Pe = 100. As
shown by the next tests of the Gaussian hill, the situation improves very much when
passing to third- and fourth-order accurate time-stepping algorithms.

Galerkin and R2,2 • Higher-order methods in time provide a gain in accuracy. Fig-
ure 5.17 shows, for a Courant number C = 3, that the fourth-order time scheme
performs well for all values of the Peclet number. Obviously, results degrade when
the time step is too large, see the results for C — 4 and Pe — 100.

Time-discontinuous Galerkin. The time-discontinuous Galerkin formulation in-
troduced, for pure convection, in Section 3.10.1, see also the examples in Section
3 . 1 1 .4, is used here. Linear finite element approximations are employed in both space
and time, giving a third-order accurate and unconditionally stable method. Adapting
the developments in Section 3.10.1 (pure convection) to the present convection-
diffusion case, the following partitioned matrix system is obtained for the nodal
unknowns un+1 and un :

+ \ AtC + \v&fK\ un+1 - (M - i AiC - ii/A*K) un+ = 0
< 3 O ' V t j o /

+ ij/Atic un+1 + M + Afc + I/A*K un+ = 2Mun~ .(M + ^
V « j
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initial condition
Crank-Nicolson/Galerkin
exact solution

C=1andPe=100 C=1.5andPe=100

Fig. 5.16 Gaussian hill: standard Galerkin and Crank-Nicolson.

— initial condition
R2,2/Galerkin

exact solution

C=3 and Pe=100 C=4andPe=100

-Al

Fig. 5.17 Gaussian hill: standard Galerkin and R2,2-
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initial condition
space-time/Galerkin
exact solution

initial condition
space-time/GLS
exact solution

Fig. 5.18 Gaussian hill: space-time Galerkin (left) and Galerkin/Least-squares (right).

The matrices M (consistent mass), C (convection), and K (diffusion) are defined in
(5.14). The conditions un+1(0) = un+(0) = 0 and wn+1(l) = wn.+(l) = 0 are
enforced to satisfy the boundary specifications.

Large time steps, corresponding to a Courant number (7 = 3, are used to test the
capacity of this unconditionally stable scheme to deliver accurate results well beyond
the stability limit of explicit methods for an equivalent computational cost (there are
two unknowns per node). Figure 5.18 shows the results at t = 0.6 for the Galerkin
formulation and three values of the Peclet number, Pe = 1,5 and 100. Note that phase
accuracy has improved with respect to the Crank-Nicolson results in Figure 5.16.

Time-discontinuous Galerkin/Least-squares. The formulation described in Sec-
tion 5.5 is used. The partitioned matrix system for the nodal unknowns un+1 and
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un is now obtained in the form

J un+1

n+

/
J+l

Remark 5.8 presents two expressions for the stabilization parameter r. The first one
is used here but other definitions can be employed. Numerical results at t = 0.6
are displayed in Figure 5.18. They confirm that the Galerkin/Least-squares space-
time method can be operated with time increments much larger than the stability
limit of explicit schemes. Nevertheless, the numerical results indicate that space-
time methods exhibit a rather elevated numerical damping in smooth convection-
dominated problems when a large value of the Courant number is employed. This is
in agreement with the fact that r increases with the time-step size.

5.6.2 Transient rotating pulse

In this 2D example both problems of the transient convection-diffusion equation
are present: (1) accurate transport of the unknown is needed and (2) boundary layers
appear in the solution due to the Dirichlet boundary conditions. Therefore, high-order
time-stepping schemes and stabilized formulations are needed in order to obtain an
accurate solution. The 2D convection-diffusion problem

ut + a • Vu - V • (i/Vw) = s in !) = ]0, l[x]0, 1[
u = 0 on 50

u = 0 at t = 0

is solved with small diffusion, i/ = 10 ~5, on a uniform 40 x 40 bilinear mesh. The
source term and the velocity field are defined as follows (see also Figure 5.19):

_,io I cos(-K/2\/x2 +y2) if \/x2 + w2 < 1,
o = (-y,x) s = e < ' v .

1 0 otherwise.

Figures 5.20 to 5.24 show the numerical results obtained at t = TT and t = 5?r
for the Galerkin, SUPG and LS methods. Crank-Nicolson and R2,2 time integration
schemes have been used with Courant 1 and 3, respectively.

Boundary layers are present in the solution due to the convective character of
the equation and the homogeneous Dirichlet boundary conditions. Thus, the typical
instabilities of the Galerkin formulation soon appear. The numerical solution is
clearly improved for the stabilized formulations: oscillations are alleviated and almost
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Source term s

0 1

Convection velocity a

Fig. 5.19 Source term and convection velocity

Fig. 5.20 Galerkin with Crank-Nicolson results at t = TT (top) and t = 5?r (bottom).

suppressed in the whole domain. However, important phase and amplitude errors can
be observed in the numerical solution obtained for the Crank-Nicolson time-stepping
scheme. Note that Crank-Nicolson results present negative values, with no physical
sense, lagging behind the pulse.

It is also noticeable that both stabilization techniques produce similar results.
SUPG presents more oscillations at the boundary layer. But results can easily be
improved with the corresponding element-by-element definition of T. Here the first
formula presented in Remark 5.8 is employed. The least-squares results diffuse the
spurious oscillations more rapidly but can easily become overly diffusive if Ai or the
element size are increased.
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Fig. 5.21 SUPG with Crank-Nicolson results at t = TT (top) and t = 5ir (bottom).

Fig. 5.22 Least-squares with Crank-Nicolson results at t = TT (top) and t = OTT (bottom).
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Fig. 5.23 SUPG with R2,2 results at t = TT (top) and t = 5?r (bottom).

Fig. 5.24 Least-squares with R2,2 results at t = TT (top) and t = 5?r (bottom).



250 UNSTEADY CONVECTION-DIFFUSION PROBLEMS

Fig. 5.25 Steady-state solution of the rotating pulse problem using R2,2 with C = 2 with
Galerkin (left) and least-squares (right) formulations.

5.6.3 Steady rotating pulse problem

This example illustrates the ability of the stabilized Fade" schemes discussed in Sec-
tion 5.4.6 to accurately solve problems with internal boundary layers. The linear
convection-diffusion-reaction equation (5.la) is solved with R2,2 in the square do-
main fi = ] — l , l[x] —1,1[ with homogeneous Dirichlet boundary conditions and
the following definitions: a — 2,

{ 9 fl -g i f g < l . J I I i f p < l / 2 .~ and s = < — i •
0 otherwise. 10 otherwise.

where Q = \/x2 + y2. The asymptotic steady-state solution presents a clear pattern
with u fa 1/2 if g < 1/2 and u « 0 otherwise; the boundary layer is O( ^/v) along
the circle Q = 1/2. A uniform mesh of 40 x 40 bilinear elements is used. Figure
5.25 shows the results obtained with the Courant number C = 2 for a Peclet number
of 50000. While the Galerkin formulation fails to deliver stable results, one notes
that the least-squares stabilization succeeds in eliminating the spurious oscillations
characteristic of the Galerkin approach. Nevertheless, some oscillations remain near
sharp solution gradients. Nonlinear viscosity of the type discussed in Chapter 4
(shock-capturing schemes) should be locally added to suppress such residual oscilla-
tions. Results for other stabilized methods or for higher-order time-stepping schemes
(Rs,3) present negligible differences.

5.6.4 Nonlinear propagation of a step

This example studies the influence of the numerical time accuracy in the propagation
of a vertical front over a nonuniform mesh. Crank-Nicolson and R 2,2 are compared
and Burgers' equation,

Ut + UUX = VUXX.

is solved in ]0,1[ with a Dirichlet condition w(0. t) = 1 and a homogeneous Neumann
condition of zero total flux at a: = 1. Note that now we are confronted with a nonlinear
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Fig. 5.26 Logarithm of the absolute error at time t = 1 for the LS (left) and GLS (right)
stabilization. Crank-Nicolson is used with C = 0.75 (+) and R2,2 with C = 3.0 (A).

partial differential equation. The analytical solution given by Sachdev (1987) is

11 (r f} = I 1 4-lA^J,, (/J I J. ^T f , f.

The initial condition is imposed at t = 0.02 and a (maximum) Peelet number of 1000
is considered. Thus, the variation of u is extremely sharp and stabilized formulations
are required. Here, we also compare the GLS and LS the formulations discussed
in Sections 5.4.6.2 and 5.4.6.4, respectively. A piecewise uniform mesh of 1000
linear elements is used to minimize the error due to space discretization and highlight
temporal errors. The mesh size is h = 0.002 on [0,0.2] U [0.4,1] and h/10 on
]0.2,0.4[. As shown in Figure 5.26, the response obtained at time t = 1 with the
stabilized/Crank-Nicolson is much worse than the one given by the stabilized/R2,2-
Since the spatial mesh size is very small, this is clearly due to the inferior phase
accuracy of the second-order Crank-Nicolson method. Notice that in both time-
stepping schemes the added dissipation introduced by the LS approach increases
with the size of the time step.

5.6.5 Burgers' equation in 1D

Burgers' equation is now solved in ]0,1[ with homogeneous Dirichlet boundary con-
ditions. The problem is defined by

Ut + UUX = VUXXl

u(Q,t) = w(l , t ) = 0
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0.00 0.20 0.4' .60 0.80 1.00 0.00 0.20 0.40 0.60 0.80 1.00

Fig. 5.27 Burgers' equation in ID: least-squares/Ra.a with C = 2 for Pe = 5 (left) and
Pe = 5000 (right). Results are shown for t = 0, 0.2, 0.4, 0.6, 0.8,1.

and presents a boundary layer at x = 1. The numerical results in Figure 5.27 were
obtained using a uniform mesh of 100 linear elements.

A central spatial discretization, such as the Galerkin formulation, is unable to
reproduce the solution to this problem for high values of the Peclet number. We note
from Figure 5.27 that the LS/R2,2 scheme produces an excellent response, except in
the boundary layer where it presents a localized oscillation. The amplitude of this
oscillation is controlled by the Courant number. A Newton-Raphson procedure has
been used to iteratively solve the algebraic system governing the nodal values of the
solution and good accuracy was obtained in few iterations.

5.6.6 Two-dimensional Burgers' equation

A 2D Burgers' problem is now considered over the square domain fl = ]0, l[x]0,1[.
The problem is defined by the coupled equations

{ Ut + U Ux + V Uy = I/V2U,

vt + u vx + v Vy = vV2v,

and by the following initial and boundary conditions:

= s i n (x ) cos(?y), v ( x , y , 0 ) = COS(TTX) sin(Try).

u(z,0,0 = u(x,l,t = 0,

A mesh of 30 x 30 bilinear elements is used for the spatial discretization. The problem
exhibits various symmetries:

u(x,y,t) =v(y,x,t) and u(x,y,t) =-u(l - x.l - y,t).
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Fig. 5.28 Burgers' equation in 2D: least-squares and R2,2 for Pe = 5000 and (7 = 2.

Along the transverse section of the domain they imply that

u(x.x.t) = v(x,x,t) and u(x,x,t) = — u(l — x. 1 — x. t}.

When convection dominates the nonlinear transport, the solution includes the forma-
tion of a discontinuity along the diagonal of the domain passing through the points
(0,1) and (1,0).

As in the ID Burgers' problem, the Galerkin spatial discretization fails to give
acceptable results for high values of the Peclet number. Figure 5.28 shows that
the LS finite element scheme combined with Pade approximation R2,2 succeeds in
capturing the solution with good accuracy. Since the scheme is not monotone, it
exhibits residual oscillations near sharp gradients. It does, however, not degrade the
solution outside the zones of strong solution gradient.



254 UNSTEADY CONVECTION-DIFFUSION PROBLEMS

Appendix Least-squares in transient/relaxation problems

The LS formulation is intrinsically ill-posed for steady convection-diffusion prob-
lems. This is not the case of other well-known stabilization techniques such as the
SUPG or GLS formulations. For this reason, LS methods were not introduced in
Chapter 2. However, LS techniques are commonly used in transient pure convection,
see Chapters 3 and 4 and have been extended to transient convection-diffusion in this
chapter. Are the intrinsic problems of least-squares in steady convection-diffusion
hidden in the transient case? Do they corrupt the transient solution or its steady-state?

Here a simple example/exercise is used to recall the difficulties of LS in a steady-
state (elliptic) formulation. We also show that these difficulties do not exist in tran-
sient situations. Moreover, the steady solution obtained as the result of a relaxation
technique with LS is well-behaved and lacks the inconsistencies of the pure steady
solution. Thus, LS can be an alternative to SUPG or GLS in transient (or relaxation)
problems because it is also well-posed and can be implemented with standard C °
finite elements without introducing additional variables (Huerta and Donea, 2002).

The steady-state convection-diffusion equation. The model problem, which is
studied in order to show the inherent difficulties of the LS formulation in steady-state
problems, is the homogenous ID convection-diffusion equation,

a ux — v uxx = 0. (A.I)

A particular example suffices to illustrate the inconsistency of the LS formulation in
steady-state problems, in particular,

(aux -vuxx = 0 in f t := ]0 , l [ ,
jw(0) = 0and«(l) = 1.

The exact solution of (A.2) is:

_ l-exp(ax/i/)
«exact(*)- l _ e x p ( a / J / ] ' <A'3>

where, as expected, a/v controls the relative importance of the convection and diffu-
sion term, see Figure A. 1.

The variational form for the LS formulation of (A.2) is: find u in the appropriate
trial space such that

(avx — vvxx,aux — vuxx) = 0 Vv G Ho(fi). (A.4)

Remark A.1 (The trial and test spaces). The variational form involves inte-
grals of second derivatives of both u and v. Thus, it is necessary that the spaces
of trial and test functions are subspaces of H-L2 . On one hand, the space of the
test (weighting) functions is, as usual, chosen such that homogenous conditions
are verified on the Dirichlet portion of the boundary, F o- Thus, in general, the
test functions belong to

•Hj^(ft) := {v € H2(Q) | v = 0 on TD}.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
domain

Fig. A. 1 Exact solution of problem (A.2) for increasing values of a/v.

In the particular case studied here, see (A.2), only essential boundary conditions
are imposed, consequently,

On the other hand, the trial solutions, u, must satisfy the Dirichlet (forced)
boundary conditions; thus, the space of trial solutions is, in general,

{u e u = UD on TD} =

where up are the Dirichlet boundary data on Fp, and
"H2 (0) satisfying the Dirichlet boundary conditions.

{UD},

D is any function of

Remark A.2 (The actual steady problem). The extra regularity in the LS
weak form also implies extra boundary conditions for the strong form of the
problem. These extra boundary conditions are naturally enforced in (A.4). In
fact, if equation (A.4) is integrated by parts recalling that v G 7-1 Q, the Euler-
Lagrange equation and the natural boundary conditions associated with (A.4)
become apparent, namely

u(0) = 0andw(l) = 1,
v(aux — vuxx) = 0 at

(A.5)
= 0 and x = 1.

Note that this problem is consistent with the original one, see (A.2).

Remark A.3. It is well known that the LS formulation is formally equivalent to
a higher-order problem. This has originated a debate on boundary conditions
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in LS problems, see for instance the books by Zienkiewicz and Morgan (1983,
Sec. 6.8.) and Jiang (1998, p 25). Here it is clear that, in finite elements, the
extra boundary conditions are natural conditions which do not appear explicitly
in the weak form. But they are imposed implicitly! If other conditions, different
from these natural ones, are imposed on the boundary spurious solutions may
be obtained, as noted by Zienkiewicz and Morgan (1983). Thus, as observed by
Jiang (1998), if other numerical techniques are used, such as finite differences,
the extra (natural) boundary conditions must be enforced explicitly.

The objective now is to study the stabilization effects of the LS formulation for
convection-dominated situations. Thus, the limit when v approaches 0 is analyzed,
in this case, the variational form (A.4) becomes: find u 6 %o(^0 + {WD}, such that

(v z ,w*)=0 , V v e W j ( f t ) . (A.6)

However, the equivalent strong form (i.e., the Euler-Lagrange equation associated
with the variational form and the boundary conditions induced by the functional
spaces) associated with (A.6) is

(uxx=0 in n - ]0,1[

ju(0) = 0and u(l) = 1.

The unique solution of this problem is u(x) = x, which is obviously non consistent
with the limit case of (A.3) for v approaching zero. In fact, this solution coincides
with lim^-nx) Wexact(x) = x. Thus, the steady LS solution will converge in the limit
case v = 0 to the exact solution for the limit case v -» oo. This is intrinsic to the
LS formulation in steady problems. This is why LS are not used as a stabilization
technique for the steady convection-diffusion equation.

It is important to note that the problem defined by (A.7) corresponds to the limit
problem of (A.5). Thus, the difficulties of the LS formulation are also present for
small values of v as it will be seen in the following numerical examples.

These conclusions can be confirmed numerically. Figure A.2 shows numerical
solutions of (A.4) for a uniform mesh of 10 Cl finite elements (Hermite elements
of degree 3) as a/v grows. The Galerkin approximations with the same mesh are
also plotted for comparison. As expected, when convection becomes dominant, the
Galerkin formulation becomes unstable and the LS formulation approaches the "non-
physical" solution u = x.

Figure A.3 presents the influence of the element size in this LS approximation. As
expected, as the number of elements increases the Peclet number decreases and the
approximation improves. Note however the poor results obtained with 100 elements
(200 degrees of freedom).

If standard stabilization techniques for steady problems, such as SUPG and GLS,
are used, this intrinsic problem in the limit v -» 0 does not appear, see Chapter 2. The
model problem presented in (A.2), can be rewritten in weak form using the SUPG
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Fig. A.2 Galerkin (left) and Least-Squares (right) approximations (solid lines) to the exact
(dotted) solution of the model problem for increasing values of a/v.

formulation as, find u such that

(v,aux) + (vx,vux) = 0 , (A.8)

Galerkin
SUPG Stabilization

where the Galerkin term and the stabilization term are easily recognized.

Remark A.4. Note that u must have the first derivative integrable in the whole
domain and the second derivative integrable inside the elements. Thus, u be-
longs to

{u € ^(O) | u - UD on TD, u\n* € H2(Sle) for every element fte}

where

= {v e -Hj(O) | t;|fle € U2(ne) for every element fte} (A.9)
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10 elements
50 elements
100 elements
exact solution

0 0.1 0.2 0.3 0.4 0.5 0.6 07 08 0.9 1

Fig. A.3 Influence of the element size on the LS approximations for a/v = 100.

and UD is any function of *H1+(D) satisfying the Dirichlet boundary conditions.

As previously discussed for the LS formulation, the limit v -» 0 is analyzed. In
this case, the previous weak form becomes

(v,aux) + T(avx,aux) = 0 Vi> G

which can be interpreted as the Galerkin discretization of

a ux — a T uxx = 0

u(0) = 0andw(l) = 1.

in ft

(A. 10)

(A.11)

As expected, the SUPG formulation stabilizes the solution. It introduces an artificial
diffusion (viscosity) v = a2r. Figure A.4 shows the SUPG approximation for 10
C1 finite elements, a/v = 100, and the optimal intrinsic time for linear elements,
r = (coth(Pe) — l/Pe)/i/(2a), which, as expected, is not optimal in this case because
Hermite elements of degree 3 are used.

Remark A.5 (The GLS formulation). Similar conclusions are drawn if a GLS
formulation is employed. Equation (A. 8) becomes

(v,aux) + (v x , vu x ) - v vxx , a ux - = 0.

Galerkin
GLS Stabilization

for all v e %Q+(fi), which induces exactly the same weak, (A. 10). and strong,
(A. 11), forms as SUPG in the limiting case of zero viscosity.
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Fig. A.4 SUPG approximation for a/v = 100.

The transient convection-diffusion equation. It is well known that for the tran-
sient convection-diffusion equation the LS formulation works properly. Recall that
this is also the case for both SUPG and GLS stabilization techniques. In order to
understand this behavior, the variational form obtained for each method will be pre-
sented. A homogenous ID transient convection-diffusion equation,

+ a ux - v uxx = 0, (A. 12)

is used to study the different stabilization techniques. The strong form of the model
problem in the transient case is simply

ut + aux — vuxx = 0

•u(O.t) = UQ and u( l . t )

u(x, 0) = f ( x )

in fi x M+ := ]0. l[x]0.oo[,

u\ fori e E+ (boundary conditions),
for x e fi (initial condition),

(A. 13)

where the initial condition f ( x ) must be a smooth function.
In order to implement a stabilized formulations (LS, SUPG or GLS) for transient

problems we perform first the time discretization of (A. 13). For simplicity, a single-
step time-integration scheme is used, but higher-order in time schemes can also be
implemented. After time discretization the spatial equation that must be solved at
each time step is

Au
—- (A. 14)

with Aw = un+l — un. Thus, the spatial operator to be used for the LS approach is
obtained from the l.h.s. of the previous equation, namely
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Once the spatial operator is known the variational form induced by the LS formu-
lation can be defined, that is, Vi> G %o(ft),

0 = (L(v).ut +aux - vuxx)

( v ^ai ^ , ^\ (A'16>= I — +9(avx - vvxx),ut +aux - vuxx\.

Remark A.6. Note that, as usual, the test space is independent of time and the
trial space is in this case defined as

{u\ u(-.t) en2(^).te E+ saidu(x.t) = UD forz on TD}

= {u | u(-,t) e ftjj(n) + (uD},t e K+}
As expected, the LS formulation still requires higher regularity for the solution
because of the presence of the second-order spatial derivatives.

Remark A.7 (The actual transient problem). As previously observed in Re-
mark A.2, the extra regularity in the LS weak form also implies extra boundary
conditions for the strong form of the problem. This extra boundary condi-
tions are naturally enforced in (A. 16). The Euler-Lagrange equation and the
boundary conditions associated with (A. 16) are

ut + aux - vuxx - a9At(ut + aux)x

- vOAt(ut - vuxx]xx = 0 in ft x R+.

u(0.<) = «0andu(1.0 = ui
,

v9At(ut+aux-vuxx)\x=0=Q

vO&t(ut +aux - vuxx)\x=l - 0

u(x. 0) = f ( x ) on x € H.

Note that this problem is also consistent with the original one, namely (A. 13),
hint: use the transient differential equation (A. 12) to verify the Euler-Lagrange
equation.

In the limit case when v -> 0 the weak form (A. 16) becomes

(v,ut + aux)Q + a£(vx,ut+aux)Q=0 Vv € ^o(^)^ (A. 18)

where, for convenience, a parameter, e := 9At, is defined. Note that, as previously
observed, the regularity conditions are relaxed in this limit case.

The Euler-Lagrange equation associated with the previous weak form is

[l-aedx](ut +aux) = 0, (A. 19)

and the strong form induced by (A. 18) is

[l-a£dx](ut +aux) = Q in ft x R+ := ]0, l[x]0.oc[

M(0,*) = u 0 andM(l , t ) = MI f o r £ e f l t f , (A.20)

u(x,Q) = f ( x ) on z 6 ft.
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That is, (A.1 8) can be interpreted as the Galerkin discretization of this strong form. It is
important to note, for consistency, that the strong form defined by (A.20) corresponds
to the limit, when v approaches 0, of problem (A. 17).

Remark A.8. Note that in the limit case when v approaches 0, (A. 12) becomes
ut + aux = 0, whose solutions also satisfy (A. 19).

Remark A.9 (Stabilizing effect of the LS formulation). At steady-state, that
is when ut -> 0, the problem defined by (A.20) reduces to

{ aux — a2e uxx = 0, in fi

•u(O) — U0 and u(l) = uI,

which clearly shows both the stabilizing effect of the LS formulation and the
fact that the steady solution of the transient LS formulation is well-posed. Note
the equivalence with (A. 11) and that the artificial diffusion is controlled, as
expected, by the time increment, v — a2 e = a20A£.

However, this problem is the transient counterpart to (A.7), whose solution was
clearly "non-physical". Thus, the obvious goal now is to determine if (A.20) presents
physical solutions, or not. First, however, we wonder if (A.20) is well-posed. Note
that this is a hyperbolic equation with prescribed Dirichlet conditions on the whole
boundary. Does (A.20) present feasible solutions? These questions will be answered.
Before, however, the SUPG and GLS stabilization techniques are studied in order to
obtain the transient counterpart to (A.11).

In SUPG and GLS formulations the extra term added to the Galerkin weak form
is a function of the residual to ensure consistency of the formulation. The residual of
(A. 14) is simply

Aw
#(Aw) :- — +0(oAwx -v&uxx] + au™ - vu"x

/_ \ 6

and the stabilized weak form is

In ID and for SUPG, see Chapter 2, this operator is defined as 9>(v) := 9a vx. Thus,
the variational form associated with SUPG is, Vv e %0(Q),

(v.ut + aux - vuxx) + ̂ 2r(9avx,ut + aux - vuxx)Qe = 0. (A.22)
e

Moreover, in the limit case when v approaches 0 this form becomes

(v,ut +aux) + r(9avx,ut + aux) = 0 Vv <E ftj(tt)> (A.23)

where the sum over element interiors is no longer necessary because only first deriva-
tives are present (second derivatives disappear in the limit v -> 0).
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This equation can be interpreted as the standard Galerkin discretization of

[l -aOrdx](ut + aux) = 0.

which corresponds to (A. 19) for e := 9r. Thus, the strong form corresponding to the
stabilized formulation is identical to (A.20) (where e now depends on the intrinsic
time T) and the analytical solution developed next will also be valid for the SUPG
stabilization.

Remark A.10 (GLS stabilisation). In the GLS formulation, the perturbation
operator is defined as IP := £, see equation (A. 15). Then, the variational
form obtained for the limit case v -» 0 can be interpreted as the Galerkin
discretization of

r T -\

which also corresponds to (A.19) where, in this case, e := 0rAt/(r + At).

The analytical solution of the strong form associated with the stabilized formula-
tions is obtained from the general solution of (A.19), which is

u(x, t} = F(t) exp(x/ae) + G(at - x], (A.24)

where functions F and G are be determined imposing the boundary and initial
conditions. In this particular case, F and G are piecewise defined functions, for
(n — l)/a <t< n/a

ae

and for (n — 1) < z < n

Note that the analytical steady-state solution (i.e., when t ->• oc) is

/ x / xexp(x/a£) — 1
U(X) = (Ui - U0) - — - - - - + UQ.

exp(l/a£) - 1

This equation can be rewritten in terms of an artificial viscosity v = a e, namely

u(x) = (Wl - Uo) + UQ: (A.25)
exp(a/i/) — 1

which clearly shows the boundary layer structure of the solution, see (A. 3), and, as
expected, only depends on the boundary conditions (not on the initial condition).
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Therefore, in the transient case the strong form of the limit problem (i.e., when
v -» 0) is well-posed, has an analytical solution and the steady-state solution presents
the desired structure.

The model problem (A. 13) is now numerically solved for the particular case

ut + aux — vuxx =0 inO x E+ := ]0, l[x]0,oo[,

u(0,£) =0andw(l ,*) = 1 f o r t € E + ,
u(x, 0) = x for x € 1).

In this particular case, the analytical steady solution of the stabilized problem,
equation (A.25), is

exp(ox/P) - 1
hm u(x,t) =

exp(a/^) — 1

Note that, the boundary layer is governed by numerical parameters, v = a 2#At for
LS, v = a20r for SUPG and v - a20r At/(r + A*) for GLS.

Before presenting the numerical results, the formulation proposed in Section
5.4.6.4 is recalled, see also Huerta and Donea (2002). It allows us to use standard C °
finite elements. The weak problem is as follows: find w(-, t] € /HQ+(^) + {UD}, for
all v € %J+(Q), such that

(i>,Ut + aUx] + (UJT ,vu x x ) + / Q&t(avx — vvxx^ut + aux — vuxx\ = 0.
e

Note that this formulation, as well as the standard LS in "H2, is symmetric, this is not
the case of SUPG and GLS.

The model problem is solved for a/v — 100. Figure A.5 shows numerical results
at different instants for LS, SUPG and GLS with a uniform mesh of 10 C ° elements
(left) and a Crank-Nicolson scheme with At = 1 (i.e., C = 1). The exact solution is
also displayed for comparison. For SUPG and GLS, the intrinsic time is chosen equal
to the optimal stabilization parameter for linear elements in the steady convection-
diffusion equation, namely

h [ , , x 111r = _[coth(f t)__j_,
where, in this case, 0 = 1/2, see also Remark 5.9. Thus the exact nodal solution must
be recovered for SUPG at steady-state. The same figure also shows results for 10 C1

elements (right). As expected both C° and C1 elements produce reasonable results in
all cases, in particular, with the LS stabilization.

In summary, standard LS stabilization (in H2) can not be used directly in steady
convection-diffusion problems because it produces non-physical solutions in the pure
convection limit. But the transient convection-diffusion equation can be stabilized
with LS.

It should also be observed that the LS formulation proposed can be implemented
with standard C° finite elements and does not necessitate to introduce additional nodal
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Fig. A.5 Least-Squares (top) SUPG (center) and GLS (bottom) approximations using C°
(left) and Cl (right) elements.

variables. In fact, if the steady-state solution is desired, LS produces correct results
when a relaxation technique is employed.

This intrinsic difficulty of LS in pure steady-state problems is not present in other
stabilization techniques, such as SUPG or GLS, which stabilize properly both steady
and transient equations.



This chapter is concerned with the finite element treatment of viscous incompressible
flows governed by the Navier-Stokes equations. Solving these equations numerically
meets two difficult problems. The first one is related to the discretization of the
nonlinear connective terms, it requires the use of stabilized finite element formulations
to properly treat high Reynolds number flows. This issue has been already discussed
in previous chapters. The second difficulty is related to the numerical treatment
of the saddle-point problem which arises from the variational formulation of the
incompressible flow equations with the pressure acting as a Lagrangian multiplier of
the incompressibility constraint. Different methods have been devised for the solution
of the above numerical difficulties and some of them are discussed in this chapter.

6.1 INTRODUCTION

In this last chapter we consider the finite element modeling of steady and transient
viscous, incompressible flows governed by the Navier-Stokes equations. Section 6.2
presents a review of the basic continuum mechanics concepts that are needed for
the finite element formulation of incompressible flow problems. The Navier-Stokes
equations governing viscous incompressible flows in the laminar regime are then
introduced, together with the associated initial and boundary conditions.

The following sections are devoted to the application of finite element techniques
to model incompressible flows in the Eulerian description. As shown in Section
6.3, there are two major sources of numerical difficulty in the use of the standard
Galerkin finite element method. The first is related to the incompressibility of the
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fluid and manifests itself when an inappropriate combination of element interpolation
functions for the velocity and pressure is employed. As a consequence, instabilities
in the pressure field may appear, and this is independent of the Reynolds number.
That is, instabilities may occur even at very "slow" flows (low Reynolds number).
A proper combination of interpolation spaces (for velocity and pressure) is needed
unless a specific formulation circumventing these instabilities is employed.

A second source of numerical difficulty is due to the presence of nonlinear con-
vective terms in the Navier-Stokes equations. As seen in the preceding chapters,
the Galerkin formulation typically lacks stability when convective effects dominate
and alternative spatial discretization procedures must be advocated to restore stability
without compromising the accuracy. In the present chapter attention will therefore
be focused on situations in which convective effects are important, as well as on the
numerical difficulties arising from the fluid incompressibility.

In Section 6.4 we define the function spaces that are needed for the approximation
of the velocity and pressure fields. Section 6.5 is concerned with the finite element
formulation of stationary Stokes problems, thus leaving aside the problems arising
from the convective terms in the full Navier-Stokes equations. Emphasis is placed on
mixed finite element formulations in which both velocity and pressure are retained as
unknowns. Conditions to be satisfied that produce stable approximations with mixed
methods in the standard Galerkin formulation are discussed in some detail. Stabilized
formulations are then introduced which provide a remedy for the deficiencies of the
Galerkin approach. We also discuss the penalty method which uncouples the determi-
nation of the velocity and pressure fields through a relaxation of the incompressibility
constraint.

Section 6.6 deals with steady Navier-Stokes problems. We underline the additional
difficulty introduced by the nonlinear convective terms. Fortunately, stabilization
techniques provide a remedy for the deficiencies of the Galerkin approach arising
from both the convective terms and the incompressibility constraint.

Transient problems are introduced in Section 6.7. Here, emphasis is placed on
the advantages of a fractional-step projection method for the time integration of the
Navier-Stokes equations. Simple test problems easily solvable by the interested
reader are presented in Section 6.8. In particular, as an illustration, an application
of the fractional-step method for natural convection problems is discussed in Section
6.8.4.

Several excellent texts devoted to the finite element modeling of incompress-
ible flow problems are available as complements to the present introductory chap-
ter. Particularly noteworthy are Glowinski (1984), Carey and Oden (1986), Girault
and Raviart (1986), Glowinski and Le Tallec (1989), Gresho and Sani (2000), Gun-
zburger (1989), Pironneau (1989), Quartapelle (1993), Quarteroni and Valli (1994)
and Temam (2001). The finite element books by Baker (1983), Jiang (1998), Hughes
(2000), Zienkiewicz and Taylor (2000b) and Reddy and Gartling (2001) also contain
interesting chapters on incompressible problems.
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6.2 BASIC CONCEPTS

6.2.1 Strain rate and spin tensors

The analysis of the relative motion of neighboring particles within a fluid is similar to
the theory of deformation of an elastic solid: the rate of strain and the rate of rotation
in the fluid take the place of the strain and rotation of the solid. An important variable
in the characterization of fluid motion is the velocity gradient. The velocity gradient
is a second-order tensor defined in a Cartesian coordinate system by

Vv =

dx-2 dx3

dv^
8x2 dx3 J

It may be decomposed into its symmetric and skew-symmetric parts according to

dvi 1 / dvi dr(
frT • *) \ frT - fr'\~fju i £* ^ l^» JL> <t L/«

f o r i . j = 1. . . . . nsd, or

= Vsv + Vwv. where
Vs := and

(6.1)

The symmetric tensor V s v is called the rate of deformation (or strain rate) tensor.
We shall frequently use the alternative notation

1 / dv i dv
for i,j — l.....nsd

to denote the components [Vsw]jj of the strain rate tensor. The skew-symmetric
tensor Vwv is called vorticity tensor (or spin tensor). Its components are defined by

1 ltj 2\dxj d: .

If the rate of deformation tensor Vsv at a given point is identically zero, the
motion in the neighborhood of that point is a rigid body rotation.

Associated with the vorticity tensor is the vorticity vector u; defined by

a; = V x v.

or in component form

073
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Note that, a velocity field is said to be irrotational if vorticity vanishes everywhere
within the flow field.

Remark 6.1. In 3D, the relation between the vorticity vector u; and the vorticity
tensor Vwv is explicitly expressed by

3

u = -P : Vwv, i.e., Ui = - £ Pijk[V"v}jk.,
j,k=l

where P is the unit antisymmetric multilinear form of order 3 (see van der
Waerden, 1970, p. 76). P is defined such that Pijk = 0 if one of the indices is
repeated and for i, j and k different

J 1 if TT is even
\ -f • . .I — 1 if TT is odd

where TT is the permutation taking 123 into ijk.

6.2.2 The stress tensor in a Newtonian fluid

In a general fluid at rest, only normal stresses are present and the stress tensor has the
isotropic form

(Tij = - p i j ,

where p is the static fluid pressure and Sij the Kronecker delta. The situation is
different for a fluid in motion. Then, in general, tangential stresses are non-zero,
and the normal component of the stress acting across a surface element depends on
the direction of the normal to the element. The quantity — ̂ GH (sum on i), which is
invariant under rotation of the reference axes and reduces to the static fluid pressure
when the fluid is at rest, is used to define the pressure at a point in a moving fluid:

Note that this is a purely mechanical definition of pressure, which is thus not connected
to the usual definition of pressure in thermodynamics.

It is convenient to decompose the Cauchy stress tensor cij into the sum of an
isotropic part — p i j and a remaining non-isotropic part S i j , the deviatoric stress
tensor:

For a Newtonian fluid, it is assumed that the stress tensor and the strain rate tensor
are linearly related. The stress-strain rate relationship is given by

vJ\_ J
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where n is the fluid dynamic viscosity and A the so-called second coefficient of
viscosity. For an incompressible fluid one has V • v = 0 and consequently the above
relation reduces to Stokes' law

In compact form Stokes' law reads

or explicitly in 3D:

/011 012 013\ /I 0 0N

021 022 023 = -P I 0 1 0

\031 032 033 / \0 0 1,

2i; +

+
8x

(6.2)

2Vd^
+

dV2_\ 1

8x

+

+
dv

dv
\2\dxl dx3

Remark 6.2. It is easy to prove the identity

+

which will be repeatedly used in the derivation of the variational form of Stokes
and Navier-Stokes problems. The proof (see for instance Hughes, 2000, p. 79)
uses the additive decomposition (6.1) and the fact that

cr - - tr - - ij try,

in view of the skew-symmetry of Vw« and the symmetry of cr.

6.2.3 The Navier-Stokes equations

A number of important phenomena in fluid mechanics are described by the Navier-
Stokes equations. They are a statement of the dynamical effect of the externally
applied forces and the internal forces of a fluid that we shall assume Newtonian. The
internal forces are due to the pressure and the viscosity of the fluid. We consider a
flow region 0 e Ensd, where nsd = 2 or 3. The domain Q occupied by the fluid
will be assumed bounded (finite size). The boundary F = dfl of the fluid domain is
assumed to be Lipschitz continuous, meaning that it is a closed and sufficiently regular
surface. Then, the time-dependent flow of a viscous incompressible fluid is governed
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by the following form of the momentum equation (1.15) and the mass-conservation
equation (1.11), called the Navier-Stokes equations:

p(vt + (v-V)v) = V-a + pb inftx]0,T[, (6.3a)

[. (6.3b)

Here, p is the fluid density and 6 the volume force per unit mass of fluid. Using Stokes'
law (6.2), the equation of motion (6.3a) can be expressed in the more convenient form

vt + (v • V)v - 2i/V • Vsw + Vp = 6,

where z/ = p,/p is the fluid kinematic viscosity and p the kinematic pressure, that is
pressure divided by density. Usually the previous equation is rewritten as

vt + (v - V)v - i/V2v - i/V(V • v) + Vp = 6 (6.4)

and referred as the velocity-pressure stress-divergence form.
The incompressibility condition (6.3b) is a consequence of the fact that in an

incompressible continuum the rate of change of the mass density following the mo-
tion is zero, see equation (1.12). Under the incompressibility condition (6.3b), the
momentum equation (6.3a), or (6.4), can be transformed to

(6.5)

Laplacian operator applied to the velocity vector. Its
ponents are defined by
where V2v denotes the Laplacian operator applied to the velocity vector. Its com-

The momentum equation is usually expressed in form (6.5), because, apart from the
convective term (v • V)v, these equations uncouple the velocity components.

The Navier-Stokes problem must be completed with suitable initial and boundary
conditions to form a well-posed initial boundary value problem. Typical boundary
conditions consist of prescribing the value v D of the velocity on a portion F D of the
boundary:

t), xe r D , *e]o,r[, (6.6)
and boundary traction t on the complementary portion F ^:

n . tr(x, t) = t(x, t), x e TTV, t € ]0, T[, (6.7)

where vector n denotes the unit outer normal to the boundary.

Remark 63 (Imposing boundary tractions). Note that for fluids obeying
Stokes'law, equation (6.7) is equivalent to

n-cr = -pn + 1vn> Vsv = t. (6.8)
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In 2D and with reference to a local system of Cartesian axes (n.r), it becomes

-p + 1v^ = tn,on
(dvT dvn\ _
\ dn dr /

The first condition involves both pressure p and the velocity gradient. It rep-
resents a condition of applied normal stress. The second one models applied
tangential stresses. Such boundary conditions are frequently employed, in par-
ticular, to simulate a no-stress condition at outflow boundaries.

In the case of a time-dependent problem, the value of the velocity field at the initial
time t = 0 must be given in O:

u(iC.O) = VQ(X], x 6 H.

Moreover, the initial velocity field VQ must be divergence free, that is

V • VQ = 0 in fi.

Remark 6.4. No initial condition needs to be specified for the fluid pressure.
This is a consequence of the fact that no time derivative of pressure appears in
the governing equations. When Dirichlet conditions are imposed everywhere
on the boundary, IV = 0, pressure is only present by its gradient in the Navier-
Stokes equations, and thus it is determined only up to an arbitrary constant. In
this case, it is usual to impose the pressure average or the value of the pressure
at one point to uniquely define the pressure field.

Remark 6.5. In the case of highly viscous flow, the convective terms in the
Navier-Stokes equations can often be neglected if compared with the dominant
viscous terms. The resulting equations are identical to the equations of isotropic
incompressible elasticity and are called equations of Stokes flow:

\ Vt — fV v + Vp = b

Remark 6.6. A dimensionless form of the Navier-Stokes equations is obtained
by replacing the kinematic viscosity v by the inverse of the flow Reynolds
number defined as Re = VL/v, where V and L stand, respectively, for a
characteristic velocity and a characteristic length of the flow. Reynolds number
Re characterizes the ratio between the inertia forces and the viscous forces. In
the absence of body forces, the Navier-Stokes equations in primitive variables
read

V-v = 0
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Remark 6.7. In the case of 2D motion, v = ( v 1 , v2, 0) and v1 and v2 are
independent of x3. From the incompressibility condition, V • v = dv i/dxi 4-
dv2/dx2 = 0, we may pose

dil> d*l>
Vl = « , V2 = - ~ ,

OX2 OXi

where the unknown scalar function t/>(x. t), called stream function, is defined
by

,p -P
i})(x,i) -ifro = / Vi/>-dx = I [v x dx]s.

Jo Jo
where T/>Q is a constant and the line integral is taken along an arbitrary curve
joining some reference point O to the point P with coordinates x; note that
dx represents a tangent vector to the arbitrary curve. It is common practice in
computational fluid dynamics to provide a picture of a flow field by drawing a
family of streamlines (curves at constant ̂  and v tangent). In the finite element
context, contours of streamlines, with specified intervals in t/> between pairs
of neighboring streamlines, are obtained by numerical integration along the
element sides or through the solution of a Poisson equation.

6.3 MAIN ISSUES IN INCOMPRESSIBLE FLOW PROBLEMS

Before introducing finite element techniques for the numerical solution of the Navier-
Stokes equations, we wish to underline the main difficulties involved in the numerical
simulation of incompressible flow problems.

A first difficulty is due to the presence of nonlinear and non-symmetric convective
terms in the momentum equation (6.3a). Such difficulty increases with the value of the
flow Reynolds number. High Reynolds number flows are convection dominated and,
as repeatedly mentioned in the previous chapters, the standard Galerkin formulation
is unstable. Stabilization techniques, such as SUPG, GLS, SGS or LS must be used to
provide meaningful finite element solutions at high Reynolds numbers. These issues
have been discussed in detail in previous chapters.

Another source of numerical difficulty is the incompressibility condition. The
continuity equation for an incompressible fluid takes the peculiar form expressed
in equation (6.3b). It consists of a constraint on the velocity field which must be
divergence free. Then, the pressure has to be considered as a variable not related to
any constitutive equation. Its presence in the momentum equation has the purpose of
introducing an additional degree of freedom needed to satisfy the incompressibility
constraint. The role of the pressure variable is thus to adjust itself instantaneously
in order to satisfy the condition of divergence-free velocity. That is, the pressure is
acting as a Lagrangian multiplier of the incompressibility constraint and thus there is
a coupling between the velocity and the pressure unknowns.

Various formulations have been proposed in the literature to deal with incom-
pressible flow problems. Here emphasis is placed on primitive variable formulations
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(retaining velocity and pressure as unknowns). Penalty methods are also discussed
because they allow us to uncouple the determination of the velocity and pressure
fields.

The primitive variable formulation, with both velocity and pressure unknowns,
leads to so-called mixed finite element methods. Such methods present numerical
difficulties caused by the saddle-point nature of the resulting variational problem;
recall that pressure acts as a Lagrangian multiplier of the incompressibility constraint.
Then, the algebraic system for the nodal values of velocity and pressure in a Galerkin
formulation is governed by a partitioned matrix with a null submatrix on the diagonal.
Solvability of the algebraic system depends on a proper choice of finite element spaces
for velocity and pressure. They must satisfy a compatibility condition, the so-called
LBB condition. There are, however, alternative finite element formulations that allow
us to circumvent the LBB condition and enable the use of velocity-pressure pairs that
are unstable in the standard Galerkin formulation.

The penalty formulation allows the elimination of the pressure variable from the
Navier-Stokes problem through a relaxation of the incompressibility condition. The
constraint V • v = 0 is replaced by V • v (A) = —p^ /A where A is a large parameter.
This substitution eliminates the pressure gradient term from the momentum equation.
Since it involves only velocities, the penalty method is computationally very attractive.
A disadvantage is the presence of the penalty parameter A, which may cause a loss
of accuracy for excessively large values of A, and prevent convergence to the actual
solution for insufficiently large parameters.

As a starting point for the development of finite element models for incompressible
flows, we introduce in the next section finite element spaces for velocity and pressure.

6.4 TRIAL SOLUTIONS AND WEIGHTING FUNCTIONS

The weak forms of Stokes and Navier-Stokes problems requires the introduction
of classes of functions for the velocity field and the pressure field. With respect to
velocity, v, the space of trial solutions is denoted by S. As discussed in Section
1.5.2, candidate approximating functions must satisfy a priori Dirichlet boundary
conditions, see (6.6), on Fd. The trial solution space S containing the approximating
functions for the velocity is thus characterized as follows:

S := {v e H1^) | v - VD on TD} (trial solutions), (6.9a)

where bold spaces contain vector functions such that each component is in the cor-
responding space of scalar functions. The weighting functions of the velocity, w,
belong to V. Functions in this class have the same characteristics as those in class S,
except that the weighting functions are required to vanish on F D where the velocity
is prescribed. The class V is thus symbolically defined by

V := 9*rD(n) = {w e H1^!) | w = 0 on TD} (weighting functions). (6.9b)

Finally, we introduce a space of functions, denoted Q, for the pressure. As we shall
see, spatial derivatives of pressure do not appear in the weak form of the (Navier-
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Stokes) problem; thus functions in Q are simply required to be square-integrable.
Moreover, since there are no explicit boundary conditions on pressure, the space Q,

Q := £2 (ft) (pressure space), (6.9c)

suffices as the trial solution space and as the weighting function space. Note however
that in the case of purely Dirichlet velocity boundary conditions, the pressure is defined
up to a constant, see Remark 6.4. In such a case, its value must be prescribed at a
given point of the domain ft and the pressure space Q is thus replaced by £ 2 (ft) /IR.

Remark 6.8 (Construction of a solenoidal velocity field). Additional sub-
spaces accounting for the incompressible constraint are required for the analysis
of Stokes and Navier-Stokes problems. They are subspaces of

?*(div;ft) := {v € £2(ft) | V-t i € £2(ft)}, (6.10)

which is a Hilbert space endowed with the following norm:

IHdiv-n = / v-vdto+ ( (V-v^dQ. = (v,v) + (V-v.V-v).
Jn Jn

The inner product for vector- valued functions was introduced in Section 1.5.1.2.
Consider, for instance, the space £>(ft), or Co°(ft), of infinitely differentiable
functions having compact support in ft. Then, the set of solenoidal vector fields
of T>(ft) is defined as

{v e X>(ft) | V-v = 0}.

Likewise, the set of divergence-free velocity fields in ?^o(ft) is

j-J(n) :={«e«S(n) | v •» = <)}.

For instance, to this subspace belongs the solution of the weak form of the
Stokes problem with homogenous boundary conditions. In particular, if the
domain ft is bounded and its boundary F is Lipschitz continuous, we can define

•7o(ft) := [v € £2(ft) | V-v = O i n f t , n-v = 0onr}.

Note that ?£(div; ft) is the closure of Z>(ft) with respect to the norm |H|div;n
and J"o(ft) is the closure of «7(ft) with respect to the L 2 ( ^ l ) norm, see Sec-
tion 1.5.1.1. Since »7o(ft) is a closed subspace of £2(^), we can define the
decomposition

where the characterization of J§ (ft) derives from a theorem due to Ladyzhen-
skaya (1969) which states that

^(ft) := {w e £2(ft) I w = Vp,Pe
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This result is a consequence of the Helmholtz decomposition principle (see
for instance Temam, 2001, Chap. I, Sec. 1) which states that any vector field
v defined in fl admits a unique orthogonal decomposition into the sum of a
solenoidal field and the gradient of a scalar function. This characterization
of «J^"(n) implies, in particular, that for all w € £2^) orthogonal to any
u 6 «Jo(^)> that is (itf, u] = 0, there exist p such that w = Vp. Note that
the reciprocal holds.

As shown in Section 6.7, the projection of £2^) onto ^7"o(^). denoted by
P, is of prime importance for the construction of a solenoidal velocity field
in the so-called fractional-step projection methods for solving incompressible
flow problems.

6.5 STATIONARY STOKES PROBLEM

Before studying the Navier-Stokes equations, we shall study the steady Stokes prob-
lem. That is, we neglect the time-dependent and convective terms of the full Navier-
Stokes equations. Two distinct formulations of Stokes problem are considered:

First, the momentum equation is written in terms of the Cauchy stress (also known
as stress-divergence form). The Stokes' constitutive law is only invoked after setting
the weak form. The advantage of this approach is that it can readily treat problems
with fluid constitutive equations more general than the linear Stokes' law.

Second, the problem is directly formulated in terms of velocity and pressure. Use
is made of Stokes' law and of the incompressibility condition to express the viscous
term as the Laplacian of velocity. This is the standard form of the Stokes equations.

6.5.1 Formulation in terms of Cauchy stress

6.5.1.1 Strong form In differential form, a steady Stokes problem is stated as
follows in terms of Cauchy stress: given the body force 6, prescribed velocities v D
on portion FD of the boundary and imposed boundary tractions t on the remaining
portion FAT, determine the velocity field v and the pressure field p such that

— V - e r = 6 in 0 (equilibrium), (6.11 a)
V-v = 0 in H (incompressibility), (6.lib)

V=-VD on TD (Dirichlet b.c.), (6.lie)
Ji'cr — t on FAT (Neumannb.c.). (6.lid)

Note, that a constitutive equation is needed to close the problem. That is, the Cauchy
stress, cr, must be related to velocity, v, and pressure, p, that is cr = cr(p, v), for
instance by the linear Stokes' law (6.2).

6.5.1.2 Weak form The Stokes equations (6.11) define a constrained equilib-
rium problem. Techniques from optimization theory are available to treat such
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problems. In the finite element context standard methods are Lagrange multipli-
ers, penalty, augmented Lagrangian and perturbed Lagrangian methods. A de-
tailed account of such methods, including implementation details, can be found
elsewhere (for instance, Glowinski, 1984; Carey and Oden, 1986; Glowinski and
Le Tallec, 1989; Brezzi and Fortin, 1991; Belytschko et al., 2000; Quarteroni and
Valli, 1994; Hughes, 2000; Gresho and Sani, 2000).

Here, the Lagrange multiplier method is used to solve the Stokes problem. In this
method, the minimization of an objective function (the total potential energy) subject
to constraints (the incompressibility) corresponds to the stationary points of the sum
of the objective function and the constraints weighted by the Lagrange multipliers.
This saddle point problem is further discussed in Remark 6.9.

The weak form can also be obtained multiplying the equation of motion (6.1 la)
by the velocity test function w and integrating by parts the stress term, thereby gener-
ating the natural boundary condition (6.11d) on F N. Similarly, the incompressibility
condition (6.11Ib) is multiplied by the pressure test function q and the result integrated
over the computational domain fi. Thus the weak form of Stokes problem becomes:
given 6, VD and the boundary traction t, find the velocity field v G S and the pres-
sure field p e Q, such that for all velocity test functions w G V and all pressure test
functions q e Q,

/ r r r
wtdT

(6.12)
= 0.

To further clarify which equations are satisfied by the the weak form (6.12), we
integrate by parts the term involving tr and use the divergence theorem. This gives,
adding both equations,

(n-tr-t) dT.

equilibrium incomp. Neumann b.c.

The weighting functions w and q are arbitrary, thus the solution of the variational
problem (6.12) verifies the strong form (6.1 1) of the steady Stokes problem.

If the fluid constitutive equation can be expressed as

Oij = -p&ij + Sij(v),

where the deviatoric part of cr is denoted by s ij . The variational problem (6.12) can
be rewritten in compact form in terms of velocity and pressure, find (v, p) € S x Q,
such that

( a(w,v) +b(w,p) - (w,b) + (tM)rjv Vto e V

b(v,q)=Q V g e Q

or equivalently, find (v,p) 6 S x Q, such that

a(w, v) + b(w,p) +b(v,q) = (w , 6) + (w , t) r . V(i», q) € V x Q
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with the following definitions of the forms,

a(w,v] = I W(ij)Sijdtl and b(v,q) = — I q V - v d f t ,
Jn ' Jo,

see also (1.27). Note that the symmetry of the stress tensor has been used

Vw : a =
UJj 7°

w(iij) ai

Moreover, if the Cauchy stress cr is assumed given by the linear Stokes' law (6.2),

S'ij — (^ijki V(k,i)i where L^^jki = v (ojfe dji + on Ojk)->

and this allows us to write the bilinear form a(w, v} as

a(w,v) = (6.14)

Remark 6.9 (Saddle-point nature of the solution). For homogeneous Dirich-
let boundary conditions, v = 0 on TD = 8£l and F_/v = 0, equation (6.13)
reads

a(w,v) +b(w,p) +b(v,q) = (w,b), V(iy,g) € V x Q.

It can be shown (see for instance Temam, 2001) that the solution (v,p) of the
previous Stokes problem is a saddle point of the Lagrangian functional

1 / +b(w,q) — (w,b]

I(v,p) = min max I(w,q)

that is,

or equivalently,

Remark 6.10 (Stress-strain form). It is sometimes interesting to express the
bilinear form a(w, v) in equation (6.14) in terms of the strain rate vector

. , . r / dvi dv%
£•11)} ~~~?- I _ _

\dxi ' 8x2 '
-

' 8x
| I _L

8x8x2 ' dx\
containing the six strain rate components relevant in 3D analysis. To express
a(w, v) in terms of the strain rate vector e(v), we define for 3D the constitutive
matrix

/2 0 0 0 0 0\
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
\0 0 0 0 0 IJ

_
" "^

(6.15)
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It can then be shown that W( t ) J) Cijki V(kj) = ^(w)T Cv e(v), so that the
bilinear form (6.14) can be rewritten as

a(w,v) = I e(w)TCl/e(v)dQ.
JQ

Note that C,, e(v) is the deviatoric stress vector s(v) with components

It follows that

a(w,v) = I e(w)
Jn

in complete analogy with linear elasticity (see the excellent presentation by
Belytschko et al., 2000, App. 1).

6.5.2 Formulation in terms of velocity and pressure

6.5.2. 1 Strong form The formulation of the Stokes problem in terms of Cauchy
stress has the advantage that it is applicable to arbitrary fluid constitutive relations.
When the linear Stokes' law can be invoked, it is preferable to start from a strong
form of written in terms of velocity and pressure because in this form the velocity
components are uncoupled. The steady Stokes problem is usually restated as follows:

— */V2v + Vp = 6 inf i (equilibrium), (6.16a)

V-v = 0 in H (incompressibility). (6.16b)

V = VD on r/} (Dirichlet b.c.), (6.16c)

— pn + v(n> V)v = t on FAT (Neumann b.c.). (6.16d)

Having used the kinematic viscosity v — n/p and p denoting the dynamic pressure,
the ("dynamic" or "scaled") Cauchy stress tensor (normalized by density), if needed,
is also given by Stokes' law (6.2), cr = -pI + 2vVsv.

The equilibrium equation (6.16a) is obtained from (6.1 la) using the Stokes' law
(6.2) and the incompressibility condition (6. l1b), see also the velocity-pressure
stress-divergence form (6.4).

In this case, however, t does not correspond to boundary tractions. It is usually
called a "pseudo-traction".

Remark 6.11 (Laplace or stress-divergence forms). As noted previously, in
the Neumann boundary condition defined by (6. 16d) t is not a boundary trac-
tion but a "pseudo-traction". Boundary tractions are clearly enforced if the
formulation is in terms of Cauchy stress, see for instance (6.11d) or Remark
6.3. In fact, (6.8) is different from (6.16d), that is

ri'cr = — pn + Ivn- Vs v ^ — pn + v(n • V)v.
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This inequality becomes an equality if (dvj/dxi)rij — 0 for i — 1, .... nsd,
which, in the case of incompressible fluids, is equivalent to (r • V)w = 0 for
all vectors r orthogonal to n, that is (dv{/dxj)rj = 0 for i — 1. . . . . nsd.

Nevertheless, "pseudo-tractions" are the natural boundary conditions for a
weak (velocity-pressure) Laplace formulation and thus, it is often a convenient
form to impose open/artificial boundary conditions (see Section 6.8.3).

6.5.2.2 Weak form Applying the divergence theorem to the pressure gradient
term and to the second-derivative (viscous) term, the weak formulation of Stokes
problem (6.16) is also given by (6.13), namely find (v.p) € 5 x Q, such that

a(w, v) + b(w,p) + b(v, q) = (w, b) + (w, t)r V(w, q) € V x Q,

with the following new definition of the viscous bilinear term:

a(w,v) = I
Ja

(6.17)

Remark 6.12. Depending on the definition of the bilinear form a ( • , • ) , either
(6.14) or (6.17), the interpretation of t may be different. If the stress-divergence
form is employed, see (6.4) or (6.1la), the viscous bilinear form for an incom-
pressible Newtonian fluid is (6.14) and t are boundary tractions. If the Laplace
formulation for the viscous term is preferred, (6. 17) defines the viscous bilinear
form and t are "pseudo-tractions", see Remark 6.11. Note that these remarks
are also pertinent to the Navier-Stokes equations.

6.5.3 Galerkin formulation

The Galerkin formulation of the Stokes problem leads to a mixed finite element
method. We need to introduce local approximations for both the velocity compo-
nents v^ and pressure ph, as well as for their associated weighting functions w^ and
qh. We denote by Sh and Vh the finite dimensional subspaces of S and V, and Qh

the finite dimensional subspace of Q.
The velocity approximation vh e Sh admits the representation vh — uh + «£,,

where the field «£> satisfies (approximates) the Dirichlet boundary condition, see
(6. l1c), on Fjrj. Thus, the auxiliary velocity uh belongs to the same space as the
test function wh, namely Vh. The Galerkin formulation of the Stokes problem, see
(6.13), may then be stated as follows: given 6, v D and t, find the auxiliary velocity
uh € Vh and the pressure field ph e Qh for all (wh, qh] e Vh x Qh, such that

( a(wh,uh) +b(wh,ph) = (wh,bh) + (wh,th)TN -a(wh,vh
D)

\b(uh.,qh)=-b(vh
D,q

h). " (6'18)

As will become clear in Section 6.5.6, the success of a mixed finite element formu-
lation crucially depends on a proper choice of the local interpolations of the velocity
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and the pressure. Since the pressure gradient does not enter the weak form, pressure
is not required to be continuous at the interface between elements, a condition which
is mandatory for the interpolation of velocity.

The next step in the Galerkin formulation consists in approximating the veloc-
ity components t>f = u^ + v^ in terms of shape functions and associated nodal
values. Following the terminology introduced in Section 1.5.5, we denote by TJ =
{1. 2. .... nnp} the set of global velocity node numbers in the finite element mesh.
Furthermore, we denote by T/DI C rj the subset of velocity nodes belonging to the
Dirichlet portion of the boundary where component i of the velocity is prescribed.

The velocity components are then approximated as follows:

«?(*)= NA(x}uiA

(no sum on z). (6.19a)
NA(x]vDi(xA}

where NA is the shape function associated with global node number A, and u iA the
value of 11% at node number A. Recall that each velocity node has nsd degrees of
freedom. Thus, in the Galerkin formulation the test functions are defined such that

w* <E V? := span {NA}.

The vector version of (6.19a) is defined with the aid of the canonical basis of
Rnsd, namely {e\,. . . . ensd}. For nsd = 3 the expressions of ei, 62 and 63 are the
following:

ei = (l,0,0)T, e2 = (0,1,0)T, e3 = (0, 0, 1)T.

The vector version of the interpolation, (6.19a), and test functions are

The pressure field is interpolated using a possibly different set of pressure nodes
denoted by 17 and the shape functions N^, as

where A is the global pressure node number and p^ is the pressure value at A. As
previously done for the velocity, we shall use small letters, namely a and 6, to denote
element pressure node numbers; they range from 1 to nen pressure nodes. Similarly,
the weighting function qh for the pressure is expressed as

qh € Qh :=span{^}. (6.19b)
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Table 6. 1 Correspondence between matrices and vectors in (6.21) and the variational forms.

Matrix/Vector Corresponding term of equation (6.13) or (6.18)

K

G

GT

f

h

a(w,u) j
b(w.p)
b(u,q)

™Q e(w)TCi, e(v) dQ or JQ Vw?

-hpv-wdto
-j^qV-udtt

(w.b] + (w.t}r — a(w.\ ' > \ • 1 1 N \ '
-b(vD,q)

: vVv d$l

VD)

6.5.4 Matrix problem

To derive the matrix problem governing Stokes flow in the Galerkin formulation,
we introduce the above expressions for the trial and weighting functions into the
Galerkin form (6.18). This results in the following set of nodal equations for the
unknown components of the velocity field: for each A € 77 \ /?Di and 1 < i < ns<j

a(NA e^ NB

Note that t h e viscous bilinear form c a n b e defined either b y (6.14) o r b y (6.17). S i m - i l a r l y , t h e following s e t o f discrete equations corresponding t o t h e incompressibility

constraint is obtained: for every A e 57

E

From these equations one finds that the matrix system which governs the discrete
Stokes problem assumes the following partitioned form:

K /~<\ /
VJT \ / IJ.

-T oj VP

The matrices and vectors in this algebraic system of equations and the corresponding
terms in the variational equation (6.18) are identified in Table 6.1.

Matrix K is the viscosity matrix and results from the discretization of a(•••), see
(6.14) or (6.17). It is obtained, as usual, from the assembly of element contributions,

Each velocity node has as many degrees of freedom as spatial dimensions. Thus, Ke

is a square matrix whose dimension is given by nee — nen • nsd, where nen is the
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number of element nodes and nsd is the number of space dimensions. Each element
of this matrix, K*s, is characterized by indices r and s (element equation numbers)
related to the element node numbers, a and 6, and the components i and j of the
velocity:

r = nsd(o - 1) + i

s = n sd(b–1) +j

1 < r, s < nee

with 1 < a, b < nen

1 < i-.j < nsa-

(6.22)

Each element of the viscosity matrix is defined as Ke
rs = e?Ke

abej, where the
particular expression of Ke

ab depends on the formulation chosen (recall the relation
between r and s and a, b, i and j given in the previous equation). In 3D, a formulation
based on the Cauchy stress gives

Ke
„!> —Lo6 /

/ dNa

0

n

0

dNa

dx-2.
n

0

0

dNa

with

dNa

dx-2
dNa

dx\

n

0

dNa

3dNa

dNa

0

dNa

\
(6.23)

where the strain rate-velocity matrix B is identical to the strain-displacement matrix
in elasticity, and the matrix Cv is defined in (6.15). In fact, the viscosity matrix is
equivalent to the stiffness matrix in elasticity; it is symmetric and positive definite.
A velocity-pressure formulation induces a matrix with the same properties and the
following expression:

K«fc = VBbdfi. with

0

n

dx-2.

0

n

dx3

0

n

u

57Va

n

u

dx-2.
n

u

a^va

n

u

0

-/ J V Q

u

0

u

0
(6.24)

Matrix G is the discrete gradient operator, and GT is the discrete divergence
operator. Matrix G arises from the discretization of the term b(wh,ph] in the
Galerkin variational form (6.18):

G = AeGe, Ge
ra •-

where a is an element pressure node number and r an element equation number. Note
that V • (Naei) = dNa/dxi.

Vectors f and h incorporate the effect of the velocity t; D prescribed on the Dirichlet
portion YD of the boundary. Vector f also includes the contributions emanating from
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the applied body force 6 and the prescribed traction t on the Neumann portion of the
boundary. They take the form

f = AV, fe
r = (Na,b^^ + (ATa,^ -f>r>!>.>

9=1 (6.25)

p=l

Here, v€
Ds — ve

Djb if vDJ is prescribed at node 6, and equals zero otherwise.

6.5.5 Solvability condition and solution procedure

The partitioned system (6.21) could in principle be solved in several ways. These
include global methods in which the original system is solved iteratively, for instance
using the Uzawa method (Brezzi and Fortin, 1991), as well as the so-called pressure-
matrix method in which an independent linear system is generated for the pressure.

However, first of all, given the peculiar form of the Stokes system (6.21) with a null
submatrix on the diagonal, the following critical question can be raised: under which
condition can the algebraic system governing the velocity and pressure be safely
solved? It can be shown that, provided the kernel (null space) of matrix G is zero,
the global matrix (6.21) is non-singular, that is u and p are uniquely defined. Recall
that the kernel of neq x neq matrix G is the set of all vectors q (neq components)
such that Gq = 0, namely

kerG := {q | q € MAeq and Gq = 0},

where neq is the number of velocity unknowns, neq — nnp • nsd — £^1 dim(r?Di),
and neq is the number of pressure unknowns, neq = dim(r?) = dim(Q/l).

In turn, to have ker G = {0}, the velocity and pressure interpolations must satisfy
a compatibility condition, called the LBB condition, to be discussed in the next
section. Inappropriate combinations of velocity and pressure interpolations, namely
pairs of spaces not satisfying the LBB compatibility condition, may render the discrete
divergence matrix, GT, rank deficient.

Provided the kernel of matrix G is zero, the following pressure-matrix method can
be employed to solve the partitioned Stokes system. From the first equation in (6.21),
one obtains

u^R- 1 ( f -Gp). (6.26)

The introduction of this result in the second equation of (6.21) yields an algebraic
system for the pressure based on the so-called Schur complement matrix:

Note that the pressure matrix (GTK–1G) is symmetric, but full due to the presence
of K–1. It is positive definite if ker G = {0}. Once the pressure nodal values, p, are
determined from (6.27), the velocity field is obtained using equation (6.26). Usually
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this approach is combined with an iterative solver for the resulting linear systems and
therefore ends up with two nested iterative loops which make the solution strategy
quite expensive. To reduce the solution cost, alternative solution strategies have
been proposed. They are described in detail by Quarteroni and Valli (1994) and
Gresho and Sani (2000). Some of them are based on splitting the original problem
into successive subproblems cheaper to solve. An example of an alternative solution
strategy is presented in Section 6.7 in connection with the modeling of time-dependent
Navier-Stokes problems.

6.5.6 The LBB compatibility condition

We have seen that the symmetric pressure matrix (GTK-1G) is positive definite
only if ker G = {0}. If this is the case, the partitioned matrix (6.21) is non-singular
and delivers uniquely defined velocity and pressure fields. If this is not the case, a
stable and convergent velocity field might be obtained, but the pressure field is likely
to present spurious and oscillatory results.

Ladyzhenskaya (1969), Babu §ka (1970/71) and Brezzi (1974) have determined the
compatibility condition, known as the LBB (or inf-sup) condition that continuous and
discrete spaces must satisfy to guarantee the stability of a mixed method. A complete
discussion of the theory of mixed methods is beyond the scope of the present text, see
Girault and Raviart (1986) or Brezzi and Fortin (1991) for more details. We shall limit
ourselves to give a flavor of the numerical difficulties associated with these methods.

The LBB condition states that velocity and pressure spaces cannot be chosen
arbitrarily, a link between them is necessary. To illustrate this let us consider once
more the partitioned matrix system (6.21) governing steady Stokes flow, namely

K G
GT 0

where for the present purposes K is a square matrix (neq x neq), G a rectangular
matrix (neq x neq), and the vectors u, p, f and h have the corresponding dimensions.
Note that to ensure a unique solution, the matrix in the previous system, equation
(6.21), should have afull rank. Recall that the rank of a matrix is the order of the largest
square array within that matrix, formed by deleting certain rows and columns, whose
determinant does not vanish. In the present case, since K is regular (rank K = neq),
the row vectors of (GT,0) must be linearly independent, that is rankGT = neq.
Matrix G has neq rows. Thus, a necessary condition for rankG = neq is that
neq < neq. This means that in order for u and p to be uniquely determined from
(6.21), a necessary, but not sufficient, condition is that

dimQh <dimV f t .

Thus we have found a necessary relation between the dimension of the discrete ve-
locity and pressure spaces.

The sufficient condition linking these spaces is given by the Ladyzhenskaya-
Babuska-Brezzi (LBB) compatibility condition, which states that: The existence of
a stable finite element approximate solution (uh.ph] to the steady Stokes problem
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depends on choosing a pair of spaces Vh and Qh, such that the following inf-sup
condition holds:

(qh.V-wh}
inf sup |. ' — — > a > 0,

where a is independent of the mesh size h. If the LBB compatibility condition is
satisfied, then there exists a unique uh € Vh and a ph G Qh (determined up to an
arbitrary constant in the case of purely Dirichlet boundary conditions).

If the velocity-pressure pair satisfies the LBB condition, the discrete gradient
operator G in the partitioned matrix (6.21) is such that kerG = {0}. Hence, the
pressure matrix (GTK–1G) in (6.27) is positive definite and the partitioned matrix
(6.21) is non-singular. Existence and uniqueness of the solution are thus guaranteed.

6.5.7 Some popular velocity-pressure couples

In the finite element context, it is by no means easy to prove whether or not a given
velocity-pressure pair satisfies the LBB compatibility condition. Although several
numerical techniques can help, from the simplest constraint ratio (see for instance
Hughes, 2000, Sec. 4.3.7) to the more recent numerical inf-sup testing by Brezzi and
Bathe (1990) or Bathe et al. (2000) (see also Brezzi and Fortin, 1991, Sec. II.3.2).
Possible combinations of the velocity and pressure approximations leading to stable
results are given in Figure 6.1, together with seemingly natural combinations which
fail to satisfy the LBB condition.

Among the stable elements listed in Figure 6.1, the triangular and quadrilateral
Taylor-Hood elements (Taylor and Hood, 1973) appear to be the most natural ones,
in that they only make use of the base element nodes. The velocity and pressure
interpolations are both piecewise continuous, the former being quadratic and the latter
linear. In addition to being stable, the Taylor-Hood elements exhibit optimal quadratic
convergence . The mini element proposed by Arnold, Brezzi and Fortin (1984) and the
elements developed by Crouzeix and Raviart (1973) are perhaps less appealing from
the viewpoint of computer implementation because they include bubble functions. In
the mini element, the piecewise linear velocity field is enriched with a bubble function,
which is actually a cubic function in 2D (product of all barycentric coordinates) that
vanishes on the boundary. The pressure is continuous and piecewise linear. The mini
element exhibits a linear convergence and gives poor pressure approximations in 3D.

The Crouzeix-Raviart triangular element in Figure 6. 1 is actually part of a family
of stable elements developed by the same authors. It is based on a piecewise linear, but
discontinuous, pressure representation. The velocity field is described by a continuous
quadratic polynomial enriched with a bubble (as in the mini element product of
the barycentric coordinates, i.e. cubic in 2D, quartic in 3D). In spite of its extra
cost (certain versions allow more economical implementations), it is considered an
accurate and effective element.

A few other simple elements, not listed in Figure 6.1, do satisfy the LBB condi-
tion. These include the quadrilateral element with continuous piecewise biquadratic
velocity interpolation and discontinuous linear pressure (as in the Crouzeix-Raviart
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Q1P0 element
Continuous bilinear velocity,
Discontinuous constant pressure,
Does not satisfy LBB condition,
(same for linear/constant triangle)

y

\y

A •

i •

& • —

— *

/i

i

£

Q1Q1 element:
Continuous bilinear velocity,
Continuous bilinear pressure,
Does not satisfy LBB condition,
(same for linear/linear triangle)

Q2Q1 element:
(Taylor-Hood element)
Continuous biquadratic velocity,
Continuous bilinear pressure,
Satisfies LBB condition,
Quadratic convergence,
(same for quadratic/linear triangle)

Crouzeix-Raviart element:
Velocity: continuous quadratic
+ cubic bubble function,
Pressure: discontinuous linear,
Satisfies LBB condition,
Quadratic convergence.

Mini element:
Velocity: continuous linear
+ cubic bubble function,
Pressure: continuous linear,
Satisfies LBB condition,
Linear convergence.

Nodes: • Velocity

O Pressure

Fig. 6.1 Examples of 2D stable and unstable velocity and pressure interpolations.



STATIONARY STOKES PROBLEM 287

triangular element). This element enjoys quadratic convergence properties. Also
stable is the triangular element with continuous piecewise quadratic velocity and
elementwise constant pressure. This element has a linear convergence rate.

6.5.8 Stabilization of the Stokes problem

In recent years, the efforts of researchers in the area of mixed methods have been
directed towards circumventing the LBB condition, thus opening the way to the use
of velocity-pressure pairs which are not stable in the standard Galerkin formulation.

The basic idea behind stabilization procedures is to enforce the positive definiteness
of matrix (^r ^), see equation (6.21). This can, for instance, be accomplished
through a modification of the weak form of the incompressibility condition in order
to render non-zero the diagonal term resulting from the incompressibility condition.

It is now standard to stabilize incompressible flow problems using techniques
inspired from stabilized formulations, such as SUPG and Galerkin/Least-squares
(GLS), introduced in Chapter 2.

Let us illustrate the GLS stabilization proposed for the Stokes problem by Hughes
and Franca (1987). The method consists of modifying the variational form of the
Stokes problem (6.16), that is equations (6.13), by the addition of the terms emanating
from the minimization of the least-squares form

Ls(v,p) := (-vV2v + Vp- 6, -z/V2v + Vp - b),

that is, the square of the residual of the momentum equation, see (6.16a). The sta-
tionarity condition of Ls(v,p) implies that

dL$(v + ew,p + eq)
de

for all values of w and q, variations of the velocity and of the pressure, respectively.
The derivation foreseen in the previous equation implies that

(-vV2w + Vq, -vV2v + Vp-b) =0 V(t0, q) e V x Q,

or equivalently,

{ (-z/V2iw, -vV2v + Vp - b) = 0 Vio e V

(Vq, -vV^v + Vp - b) = 0 Vg G Q.

The stabilization of the Stokes problem is obtained by adding to the Galerkin
weak form (6.13) the previous equations emanating from the least-squares form. This
entails a modification of both the momentum and the continuity equations. To avoid
additional continuity requirements due to the presence of second spatial derivatives,
the terms added to the Galerkin weak form act on the element interiors only. These
terms depend on the residual of the momentum equation and therefore ensure the
consistency of the stabilized formulation. The stabilized discrete problem is then
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formulated as: find vh 6 Sh and ph e Qft, for all (wh,qh) € Vh x Qh, such that

e=l

where re is the stabilization parameter. Note that the presence in the second equation
oftheterm (Vg'1, Vpft) introduces a non-zero diagonal term in the partitioned matrix
resulting from the spatial discretization of the above GLS weak form. This produces
the desired stabilization of the pressure field.

For linear elements the GLS stabilization does not affect the weak form of the mo-
mentum equation because the terms involving the second derivatives of the weighting
function w vanish. The GLS weak formulation then reduces to the following varia-
tional problem: find t^ e Sh andph € Qh, such that, for all (wh,qh) 6 Vh x QA,

= K,6h) + (

(6.28)

e=l e=l

Note that the second term in the second equation indicates that a Poisson equation has
been generated for the pressure field. An interesting consequence of the GLS stabi-
lization of the Stokes problem is that elements with equal order interpolations, which
are unstable in the Galerkin formulation, now become stable. This is, in particular,
the case for the quadrilateral element in Figure 6.1 with continuous piecewise bilinear
interpolations, as well as for the linear/linear three-node triangle. The stabilization
parameter is chosen as

hi
T~e = Oto — ,

4v
where he is a measure of the element size. Since the Stokes equations do not contain
convective terms, the only component of Te is the viscous contribution. The choice
c*o — 1/3 appears to be optimal for linear elements.

6.5.9 Penalty method

The penalty method may be interpreted as enabling a relaxation of the incompress-
ibility constraint in the sense that the incompressible problem is approximated by
means of a slightly compressible formulation.

In the mixed finite element approach pressure is an unknown. However, the penalty
method allows its elimination and thus reduces the size of the matrix problem. There
is a vast literature on penalty methods for incompressible flow problems. In the finite
element framework, initial studies of the method were performed, among others, by
Temam (2001), Girault and Raviart (1986), Malkus and Hughes (1978), Zienkiewicz
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and Godbole (1975), Bercovier (1978) and Bercovier and Engelman (1979). Articles
by Hughes, Liu and Brooks (1979) and Heinrich, Marshall and Zienkiewicz (1978)
also provide a detailed presentation of the penalty formulation for the Stokes problem,
including computer implementation details.

The starting point for the penalty method consists in replacing the incompressibility
constraint V • v = 0 by

VVA) =-p (A)/A, (6.29)

where A is a mesh-size- and problem-independent parameter taken of the order of
107~108 in double-precision calculations. The fluid constitutive equation (6.2) is
then replaced by the following relation:

where pressure is now defined by (6.29), namely p^ — — AV • t/A\
The strict incompressibility constraint (6.11b) is thus abandoned. More precisely,

it is introduced in the momentum equation as a penalized term emanating from relation
(6.29). Consequently, the boundary value problem for Stokes flow is formulated as:

V - < 7 ( A ) = 6 inO,

v(\) = VD on YD^

n-a ( A ) = t onTN.

The weak form for the penalty method is easily obtained in the primitive variable, v,

a(w,v) + A (V'to, V -v) = (to, b) + (w,t)r Vw e V.

Note the presence of a new viscous-type term associated with the penalty parameter.
The incompressibility equation is not needed because the pressure in the momentum
equation is replaced using expression (6.29). As in Section 6.5.3, we use the repre-
sentation vh = uh + Vjr) for the finite dimensional approximation of the velocity.
The discrete formulation is then given as: find uh £ Vh, for all w h € V7*, such that

a(wh,uh) + \(V'Wh,V-uh) = (wh,bh) + (wh,th)TN

-a(wh,vh
D) - A ( V -wh,V -vh

D).

After spatial discretization, this equation produces the following set of nodal equations
for the components of the auxiliary velocity: for each A e rj \ r)Di and 1 < i < nsd

3 = 1
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From this set of algebraic equations, the following matrix system is obtained:

(K + KA) u<A) = f, (6.30)

which governs the penalty formulation of the Stokes problem. K is the viscosity
matrix arising from the term a(wh,uh). It is identical to the viscosity matrix obtained
in Section 6.5.4 for the mixed method. K A is the so-called penalty matrix, which has
the same structure as K and is defined as

KA = Ae[KA]e, (Kx}e
rs = X (V. (JV0e,), V - (Nbej))Qf,

recall the definition of the indices given by (6.22). Thus, it is identical to expression
(6.24) but with A replacing v. Finally, the nodal vector f is defined in (6.25) (where
K^g now accounts for the sum of the viscosity and penalty matrices).

Observe that the global matrices K and KA are proportional to v and A, respec-
tively. In order to impose incompressibility, parameter A must be selected very large.
However, when A is very large, the penalty matrix plays a dominant role in system
(6.30). Then, if matrix KA is regular, only the trivial solution u*A) = 0 of the ho-
mogeneous form of (6.30) is possible. It follows that matrix KA must be singular to
obtain a meaningful solution, that is

KA U(A) = 0 and U(A) ^ 0

Standard numerical integration rules used to evaluate finite element matrices are
such that, with conforming elements, they practically always result in a regular KA

matrix. To render the penalty matrix singular, one needs to lower the order of the
quadrature used to evaluate the element integrals involving the A term. Note that the
rank of system (6.30) is conserved using the required (full) quadrature for the viscous
diffusion term K". Figure 6.2, reproduced from the book by Hughes (2000), gives
the Gaussian integration rules to be used for the viscous and penalty terms with some
popular elements in 2D and 3D.

The convergence of the solution of the Stokes problem obtained by the penalty
method has been proved by Temam (2001). The main advantage of the penalty for-
mulation is the uncoupling of the velocity and pressure solutions and the elimination
of the incompressibility condition from the variational formulation. The reduction
in the number of variables renders the penalty method quite attractive. However, an
improper choice of the value of parameter A might cause numerical problems. If
A is too small compressibility and pressure errors will occur. An excessively large
value may result in numerical ill conditioning. For Stokes flow, Hughes et al. (1979)
suggest selecting A according to the relation A = c/it, where // is the fluid dynamic
viscosity and c is a constant of the order of 107 for double-precision calculations.

Remark 6.13 (The need for under-integration of the penalty term). As an
illustration, consider the case of a local approximation of the velocity u h based
upon a nine-node biquadratic interpolation in the plane (.r1 x2). The compo-
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nents (u^.u^) of the velocity are polynomials of the form

U1* = Oij + 02 ,j Xi + 03 j X2 + 04, j X\Xi

+ 05 j x 4- 06,j x + 0,1 j x\x<2 + as, j x\x\ + ag^ x\x\,

where a^j, i = 1. .... 9, are the nine coefficients of the biquadratic polynomial
for each component (j = 1,2) of the local velocity within the element. When
A is very large the flow is incompressible and the divergence-free condition

+ dudxz - 0 becomes

02,1 + 04,1 X-2 a5)i Xi fl7

+ O3,2 + «4,2 X\ + 2oe,2 X-2 + 07,2 xf + 2fl8,2 XiX% + 209;2 X\ X2 = 0.

If the penalty term is integrated exactly the above relationship must be satisfied
at every point (x1,x2) of the element and a total of eight constraints are thus
imposed for each element:

«2,1 + 03,2 = 0, 04,1 4 2fl6,2 = 0. 08,1 = 0. 07,2 = 0.

2os,i + 04,2 = 0. 207,1 + 2o8,2 = 0, 09,1 = 0; 09,2 = 0.

This coincides with the number of velocity degrees of freedom per element in
an infinite plane mesh,

r 2(2^+!)2 ohm — - - - — — = 8.
n— >oo fi

Thus, in the case of full integration of the penalty term, the constraints are
seen to consume a great number of degrees of freedom and too few are left
to properly simulate the flow problem at hand. To cure this situation a 2 x 2
Gaussian integration rale must be used to evaluate the penalty term, while the
normal 3x3 rule for the biquadratic element should be used for the viscous
diffusion term. In this way, only four constraints are imposed per element.
Incompressibility is therefore satisfied in the mean, but now four degrees of
freedom per element are available to satisfy the equations of motion.

Success of the penalty method crucially depends on an appropriate reduction
of the number of constraints introduced by the penalty term. The use of a
reduced integration rale for the penalty term leads to a proper balance between
the number of degrees available to satisfy the momentum equations and those
consumed to approximate the incompressibility of the flow.

Remark 6.14 (Equivalence of penalty and mixed methods). Malkus and
Hughes (1978) (see also Hughes, 2000) have established this important result.
They demonstrate the equivalence, for incompressible problems, between the
reduced integration of the penalty term and a mixed finite element method if
the pressure nodes coincide with the integration points of the reduced rale. The
equivalence between mixed elements and penalty-type elements with selective
integration is illustrated in Figure 6.2.
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6.6 STEADY NAVIER-STOKES PROBLEM

We shall now consider the Navier-Stokes equations for steady flow. From the defini-
tions of Section 6.2.3 and, in particular, equation (6.5) the strong form of the boundary
value problem is stated as follows: find the velocity field v and the pressure field p,
such that

-vV2v + (v • V)v + Vp = b in ft. (6.3 la)
V-v = Q in 11 (6.3 Ib)

v = VD onF^, (6.31c)
-pn + v(n- V}v = t onFjv- (6.31d)

Note that the Cauchy stress is again assumed to be given by Stokes' law.

6.6.1 Weak form and Galerkin formulation

The Navier-Stokes problem differs from the Stokes problem because of the presence
of the nonlinear convective term (v • V)v. Considering the same spaces S, V and Q
defined by (6.9), the weak formulation of problem (6.31) becomes: find v e S and
p e Q, such that

( a(w.v] + c(v;w,v] + b(w,p) = (w.b) + (w,t}T Mw e V,

\b(v,q)=0 V g e Q ,

where, apart from the bilinear form used in the weak form (6.16) of the Stokes
problem, we have introduced the trilinear form, see Section 1.5.3,

which, in this case, is associated with the nonlinear convective term in the momentum
equation. Introducing the finite dimensional subspaces Sh,Vh and Qh, and proceed-
ing as for Stokes flow, we obtain the Galerkin counterpart of the previous weak for-
mulation. Define v^ E Sh such that vh = uh + v^,, then find the auxiliary velocity
field uh e Vh and the pressure ph € Qh, such that, for all (wh, qh] e Vh x Qft,

a(wh,uh) +c(vh-wh.uh) +b(wh,ph) = (wh,bh) + (wh,th)r ,

- a(wh, vh
D) - c(vh]wh, vh

D)

b(uh..qh)=-b(vh
D.,qh).

Note that now, the r.h.s. term depends on the unknown because v h = uh + v^.

6.6.2 Matrix problem

We then express the finite dimensional approximations in terms of the velocity and
pressure shape functions defined in (6.19). Proceeding as in Section 6.5.4, the matrix
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system governing the discrete Navier-Stokes problem is obtained in the following
partitioned form:

G
(6.32)

where, as in the Stokes problem, matrices K and G are, respectively, the viscosity
matrix and the discrete gradient operator. C = C(u) is the convection matrix defined
by

C = ACCe, with Ce
rs = ef / Nav

h - VNb rift ej. (6.33)
Jtt*

Vector f is the same as for the Stokes problem, see (6.25), plus an added term: the
product of the previous matrix by the Dirichlet velocities. Recall the definition of the
indices given by (6.22).

Here again, the saddle-point nature of the problem, with pressure acting as a
Lagrangian multiplier of the incompressibility constraint, yields a coupling between
velocity and pressure. System (6.32) is nonlinear and non-symmetric (due to the
convective terms), an appropriate iterative solution technique must be used. An in-
depth discussion of solution algorithms for the nonlinear Navier-Stokes equations
may be found in the textbooks mentioned in the introduction to this chapter.

There are two potential sources of numerical instability in the Galerkin finite ele-
ment solution of steady Navier-Stokes problems. The first is due to the treatment of
the convective term and manifests itself in high Reynolds number flows when unre-
solved internal or boundary layers are present in the solution. The second source of
potential instability, already encountered in Stokes flow, is an inappropriate combi-
nation of interpolation functions for velocity and pressure. Fortunately, stabilization
procedures for the Navier-Stokes equations capable of curing both types of numerical
instability are available. They are presented in Section 6.7.2.

6.7 UNSTEADY NAVIER-STOKES EQUATIONS

Let us now consider the case of unsteady viscous incompressible flows. Here, empha-
sis will be placed on stabilized finite element formulations and on the advantages of a
fractional-step projection method for time integration of the Navier-Stokes equations.
Again, using the definitions of Section 6.2.3, the governing equations and associated
initial/boundary conditions are:

vt - vV^v + (v • V)v + Vp = b in nx]0. T[, (6.34a)

V-v = 0 inftx]0 sr[ , (6.34b)

V = VD onrDx]0,T[, (6.34c)
-pn + i / (n-V)w = t onIVx]0,:r[, (6.34d)

v(x,Q) = v0(x) in f i . (6.34e)

Note that the initial velocity field is assumed solenoidal: V • VQ — 0.
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6.7.1 Weak formulation and spatial discretization

The weak formulation is obtained, as usual, by projection of the equations (6.34) onto
a space of weighting functions w € V for the momentum equation and q € Q for
the incompressibility condition. The end result is the following variational problem:
given 6, VD,* and v0, find v(x,i) € <Sx]0,T[ and p(x,t) € Qx]0,T[, such that
for all (to, g) 6 V x Q,

(w,vt) + a(w,v] + c(v;w,v] + b(w,p] = (to, b) + (w, t ) I N ,

with v(0) = V0.
The Galerkin spatial discretization of this time-dependent problem proceeds as pre-

viously. Foreacht <E ]0,T[, we define vh
D(t] € Sh such that vh(t) = uh(t}+vh

D(i}.
Then, we seek the auxiliary velocity field uh(-, t) e Vh and pressure ph(-,t) € Qh,
such that, for all (wh, qh) € Vh x Qh,

(wh,u't)+a(wh,uh)+c(vh;wh,uh) + b(wh,ph)

= (wh,bh) + (wh,th)TN -a(wh,vh
D) -c(vh-wh,vh

D)

b(u\qh)=-b(vh
D,qh)

Finally, the finite element discretization of this weak form yields the system of
semi-discrete equations for t G ]0, T[

Mu(i) + [K + C(w(t))]u(t) + Gp(*) - f (*,«(*))

GTu(i) - h(t) (6.35)

u(0) = v0-vD(0)

where M is the standard finite element mass matrix.
To trace the transient response, this system of semi-discrete equations can be

advanced in time by suitable finite difference schemes such as the 0 family methods
introduced in Section 3.4.2.3. Note that a fully implicit method requires the solution
of a nonlinear algebraic system at each time step. Semi-implicit methods in which
the convection matrix C(v(t)) and f (t, v(t)) are treated explicitly are thus generally
preferred. In Section 6.7.3 we shall consider the time discretization of the unsteady
Navier-Stokes equations by means of a fractional-step procedure.

Remark 6.15. An in-depth analysis of the semi-discrete system induced by
the unsteady Navier-Stokes equations can be found in the series of papers by
Hey wood and Rannacher( 1982; 1986; 1988; 1990). In order to analyze stability
and obtain an energy estimate, these authors use the nowadays standard skew-
symmetric form of the convection term, see for instance Temam (2001). That
is, the trilinear form c(v; w, u) is replaced by

c(v;w,u) = -



296 VISCOUS INCOMPRESSIBLE FLOWS

which is skew-symmetric, i.e. c(v;w,w) = 0. This modified trilinear term
is consistent with the original unsteady incompressible Navier-Stokes prob-
lem. It is easy to verify that the replacement of the original trilinear term,
c( • ; • , • ) , by the new skew-symmetric form is equivalent to the replacement of
the original convective term, (v • V) v, by (v • V) v + | (V • v)v. Note that for
a divergence-free velocity field, such as the incompressible solution of (6.34),
this modification is legitimate.

Finally, it is important to remark that the skew-symmetric form of the con-
vection term is also exploited in the computational schemes in order to ensure
unconditional time stability, see Remark 6.18.

6.7.2 Stabilized finite element formulation

Recall that the Galerkin finite element method leads to central approximations of
the convective terms and is thus not optimal when convection dominate diffusion (the
viscosity effects), that is for high Reynolds number flows. In such cases, use should be
made of a stabilized finite element formulation to obtain reliable numerical solutions.
In addition, as was the case for Stokes flow, the stability of the Galerkin method
applied to the incompressible Navier-Stokes equations depends on satisfying of the
LBB condition. It is nevertheless possible to circumvent this condition, as already
seen for the Stokes problem, by making use of a stabilization technique. There
are therefore two major reasons for stabilizing the incompressible Navier-Stokes
equations.

The extension of the stabilized formulation of the Stokes problem discussed in
Section 6.5.8 to the incompressible Navier-Stokes equations (6.34) has been studied
in a series of papers by Johnson and Saranen (1986), Hughes, Franca and Hulbert
(1989), Hansbo and Szepessy (1990), Franca et al. (1992), Franca and Frey (1992),
Franca and Hughes (1993), Tezduyar, Mittal, Ray and Shih (1992) and Tezduyar and
Osawa (2000), among others. See also the review paper by Tezduyar (1992) on finite
element stabilization methods for incompressible flow computations.

The stabilized finite element formulation of the Navier-Stokes problem (6.34)
proposed by Tezduyar and Osawa (2000) is given as follows: find v h € Sh x]0, T[
andph e Q^xjO^forall (wh,qh) e Vh x Qh, such that

wh,vf) + a(wh,vh} +c(vh;wh,vh] +b(wh,ph) ~(wh,bh) -(wh,th}r' t I \ ' / \ ' ' I \ ' * / V ' / V ' ' I \-

e=l

where
%(vh) = v? + (vh - V)vh - i/V V + Vph - bh

is the residual of the momentum equation.
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In the variational form of the momentum equation, the first line represents the
standard Galerkin formulation. Similarly, the first term in the weak form of the
incompressibility constraint is the usual Galerkin term.

The terms involving the element-level integrals are the added stabilization terms.
These terms depend on three stabilization parameters. The terms involving parameter
TSUPG stabilize the Galerkin formulation in the presence of a dominating convective
term in the momentum equation, see Sections 2.4, 5.4.5 or 5.4.6. Note that other
stabilization techniques such as GLS, SGS or LS can also be employed.

Parameter TLSIC is in fact an artificial diffusion. Its dimension is length square
over time (same as the kinematic viscosity v\ and a typical choice is ||w'l|j/ie/2.
Tezduyar and Osawa (2000) propose to use this term as a least-squares stabilization
on the incompressibility constraint. It provides additional stability for flows at large
Reynolds numbers.

The terms associated with parameter TPSPG (pressure-stabilizing/Petrov-Galerkin)
allow the use of mixed elements with equal-order interpolations for the velocity and
pressure, see Section 6.5.8, in particular equations (6.28). Note that all stabilization
terms are weighted residuals, therefore ensuring the consistency of the formulation.

Tezduyar and Osawa (2000) suggest evaluating the stabilization parameters using
element-level matrices and vectors which automatically account for the local length
scales, advection field and flow Reynolds number Re. The reader interested in the
actual construction of element-based stability parameters should consult the above-
mentioned article. Note that alternative definitions of TSUPG have been proposed by
Codina (2000) and Shakib et al. (1991), see Sections 2.4.3, 5.4.5 and 5.4.6.

6.7.3 Time discretization by fractional-step methods

A popular method for the time discretization of the unsteady Navier-Stokes equations
is the fractional-step method in which, as already mentioned in Section 5.3.2, the time
advancement is decomposed into a sequence of two or more steps. Fractional-step
methods for the incompressible Navier-Stokes equations were originated indepen-
dently by Chorin (1968; 1969) and Temam (1969; 2001).

As we shall see, the fractional-step approach to time integration allows us to
alleviate the numerical difficulties related to the saddle-point problem which arises
from the variational formulation of the Navier-Stokes equations. The basic idea
is to split the numerical treatment of the various operators in the equations, thus
decomposing the initially difficult problem into relatively easier substeps. There
are several ways to perform such splitting and therefore a variety of fractional-step
methods for the unsteady Navier-Stokes equations do exist. The books by Quartapelle
(1993), Quarteroni and Valli (1994), Gresho and Sani (2000), and references therein,
should be consulted for a detailed exposition of fractional-step methods.

Fractional-step methods described here perform time discretization before the spa-
cial discretization. When this approach is adopted, a controversy arises on which
boundary conditions must be imposed at each step, because the intermediate semi-
discrete problems must be well-posed. Another important feature in fractional-step
methods is the overall order of accuracy with respect to time discretization. Most
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methods are first-order accurate, but some second-order accurate methods have also
been developed. Both types of methods will be considered in this section.

While the first step in the time discretization which treats the convective and viscous
terms in the Navier-Stokes equations might be treated by an explicit algorithm, the
final step describing the pressure/incompressibility phase must necessarily be treated
by an implicit time integration scheme. Here, an approach is adopted which gives
the choice of either an explicit, a semi-implicit, or a fully implicit time-stepping
scheme for the first step. Note, however, that adopting a fully implicit scheme for
the first step considerably increases the computational burden due to the nonlinearity
of the convective terms in the Navier-Stokes equations. Semi-implicit methods are
therefore generally preferred in large-scale computations.

6.7.3.1 Chorin-Temam projection method The principle of the projection
method is to compute the velocity and pressure fields separately through the com-
putation of an intermediate velocity, which is then projected onto the subspace of
the solenoidal vector functions. A detailed account of the method can be found in
the textbook by Temam (2001). Basic to the derivation of projection methods is a
theorem of orthogonal decomposition due to Ladyzhenskaya (1969), which is based
on the Helmholtz decomposition principle. The theorem states that any vector field
w in fU admits the unique orthogonal decomposition

w = v + V0 (6.36)

into a solenoidal field, v, with zero normal component on the domain boundary (i.e.,
V • v = 0 and n • v = 0 on F) and the gradient of some scalar function 0, see
also the Remark 6.8. In the present context, an intermediate velocity field, v"^1, is
decomposed into the sum of a solenoidal velocity field, v n+1, and the gradient of a
scalar function proportional to the unknown pressure, namely, Vp n+1.

For simplicity, we shall consider a purely Dirichlet problem: that is, we prescribe
the condition v = VD on the boundary F of the computational domain Q. The
Chorin-Temam projection method includes two basic steps as follows.

The first step includes the viscous and convective terms in the Navier-Stokes
equations (6.34) and, given the previous time-step velocity field v n, consists of finding
an intermediate velocity field, w,"*1, such that

n+1 — vn

where the velocities v* and v** must be chosen suitably for the treatment of the
nonlinear convective term, possible options are

v* = v** = vn for the explicit Euler method,

v* = vn and v** = v™^1 for a semi-implicit method,

v* = v** — v^1 for the implicit Euler method.
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Note that the complete Dirichlet boundary conditions are imposed in this first step.
This is due to the fact that this step includes the viscous term.

To construct a finite element version of the fractional-step method, a weak form
of the first-step equations (6.37) is necessary. The problem requires to find the inter-
mediate velocity v^1 £ 5int, such that for all w € Vim

/ ,,n+! _ „« \
w, -int + c(v*;w,v**)+a(w,v**) = (w,bn+l),

V At /
(6.38)

where the trilinear and bilinear forms have already been defined, see for instance
Section 6.6. 1 and equation 6. 17. Note that the functional spaces S int and Vint are such
that the complete Dirichlet boundary conditions are verified, namely v "+1 = v^+1

onF.
For the semi-implicit and fully implicit cases, the algebraic system resulting from

the finite element discretization is

+ (C(O + K) Vn+1 - n+1, (6.39)

where M1 is the consistent mass matrix, C is the convection matrix defined in (6.33),
K is the viscosity matrix identical to the one already defined in Section 6.5.4, and
vector fn+1 accounts for the applied body force b and the Dirichlet boundary condi-
tions.

Note the computational complexity of the fully implicit option, v * = v^1, for
time integration, which requires repeated computations of the inverse of the nonlinear
and non-symmetric matrix MI+A£ (C(v1^

1 )+K). In this case, predictor-corrector
methods are usually employed to solve (6.39). In the semi-implicit case, v * = vn, a
modification of the convective term is required to maintain unconditional stability as
explained in Remark 6.18.

The second step of the Chorin-Temam method determines the end-of-step velocity
vn+1 and pressure pn+l solving

,n+l _ 7,n+l
- + Vpn+l =0 in Q,

A*

V • vn+1 =0 in a
n•vn+1 = n - vn+1 on T.

n+1 _ n :_ o (6-40)

'D

Note that this second step includes the remaining term (pressure) and equation (in-
compressibility) of the Navier-Stokes equations. Now, the boundary condition only
prescribes the normal component of the velocity (not the tangential components).
This is a crucial aspect of this fractional-step method: the tangential components of
the velocity cannot be controlled on the boundary in accordance with the Helmholtz
decomposition principle, which only allows us to prescribe a condition on the normal
component of the velocity. The first equation in (6.40) is
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In the particular case of homogeneous boundary values for the normal component
of the velocity (i.e., TI-VD = 0), this is precisely the orthogonal decomposition
applied to the intermediate velocity w,"^1 = w in (6.36). Thus, V • vn+1 = 0 and
n • vn+1 = 0 on F. This shows that the fractional-step method involves an orthogonal
projection operator P, see Remark 6.8, such that

int " v / int

The weak form of the second-step equations (6.40)is given as follows: find the end-of-
step velocity vn+1 G S and the pressure pn+1 G Q, such that, for all (w.. q) G VxQ,

•n + 1)=0.
' (6.42)

Now, the functional spaces S and V are such that the solution verifies the prescribed
boundary conditions, n • vn+l = n • «2>+1 on F.

The discrete equations emanating from the discretization of (6.42) induce the
following system of algebraic equations:

At

GTvn+l = 0.

or equivalently,

V G71 O V P » + V - , o
Note that this system has the same structure as the one obtained for the Stokes problem,
see (6.21), where the viscous matrix is now replaced by a mass matrix. As already
discussed in Section 6.5.5 this system can be solved in two steps, first compute the
pressure field from

(GrMr'G)p"+' = iGrvE»

and then compute the end-of-step velocity from

M2v
n+1 = M2v£;M - A*Gpn+1,

see also (6.41). Recall that when Dirichlet conditions are precibed on the whole
boundary, a reference value of pressure must be specified at an arbitrary pressure
node because Q = £2(^)/^

The solvability issues discussed in Section 6.5.5 are automatically verified here.
That is, this algorithm provides a unique solution which converges to the exact one
for any velocity-pressure pair provided that the boundary is smooth (the intermediate
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velocity also converges to the exact one). This property and the fact that velocity and
pressure are uncoupled (recall that the mass matrix is adequately approximated by
the lumped one) have contributed to the popularity of this method.

Nevertheless, this scheme is first order in time; although modified schemes, for
instance with iterative procedures see Bell, Colella and Glaz (1989), have been de-

veloped for higher-order methods. Another drawback is that the end-of-step velocity vn+1does not satisfy exactly the Dirichlet boundary conditions, this may cause an

non-physical boundary layer of O (xA'Ai), see Remark 6.20 and the papers by Gresho
(1990) and Temam (1991).

Finally, it is important to note that the condition on the smoothness of boundary F
is, in some cases, crucial. For instance, the cavity flow problem, which is studied in
Section 6.8.2, does not present a smooth boundary. One can verify that the bilinear
equal-interpolation for velocity and pressure, that is the Q1Q1 element (see Figure
6.1), induces a non regular GTM^"1G matrix. Note that this is not the case for the
same problem and another element not passing the LBB condition: the Q1P0 element.

Remark 6.16 (Incremental projection scheme). The original Chorin—Temam
method can be modified to incorporate the pressure increment pn+l—pn, instead
of the total pressure, in the pressure/incompressibility phase. This leads to a
projection method with improved convergence properties. The first step (6.37)
of the incremental projection scheme is modified to include the pressure gradient
term Vpn and becomes

'™ ~ VH + (v* • V) v** - z/V V* = bn+l - Vpn in 0,

while the projection step is replaced by

vn+l _vn+l

A
 mt + V(pn+1 -pn) = 0 in ft,At \r v >

V-vn+1=Q in a

n • vn+l = n - v£+1 on T.

Remark 6.17 (Treatment of Neumann-type boundary conditions). When
Neumann boundary conditions, see (6.34d), are present, the condition

—pn + v(n' V)iJ = t

is decomposed in order to include the viscous part of the prescribed boundary
traction in the first step and the pressure contribution in the second step. The
process is illustrated in a paper by Laval and Quartapelle (1990). This split-
ting is also feasible when a velocity-pressure stress-divergence formulation is
employed, recall Remarks 6.3, 6.11 and 6.12.
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Remark 6.18 (Treatment of convective terms). As previously discussed, in
the first step, convective terms can be treated in various ways, from fully ex-
plicit to fully implicit. The drawback of implicit integration is the need to solve
nonlinear and non-symmetric systems at each time step. Despite their condi-
tional stability, explicit schemes are advantageous because the linear algebraic
systems that must be solved are symmetric and positive definite. Thus, effective
iterative solvers can be employed.

The interesting features of a semi-implicit approach are the linearization of
the convective term, the possible unconditional stability of the scheme, and, as
shown by Guermond and Quartapelle (1998b), the possibility of eliminating
the velocity update in the incompressibility step. To guarantee unconditional
stability in the case of a semi-implicit time integration, the skew-symmetric
form of the convective term must be used, see Remark 6.15.

Remark 6.19 (Elimination of the end-of-step velocity). Since the intermedi-
ate velocity also converges to the exact one, using the skew-symmetric form of
the convective term, Guermond and Quartapelle (1997; 1998b) rewrite the first
step, see (6.37), in the semi-implicit form

n

where the convective velocity is w£, instead of vn. Using now the momentum
equation of the second step, equation (6.41), at tn (i.e., vn = v£t - At Vp")
the first equation can be expressed in terms of the intermediate velocity only:

n+1 " 1
+(|C . V) tC+1 + -(V • t&)tC+1

Since this algorithm has eliminated the end-of-step velocity completely, if
needed it is computed from (6.41). Finally, observe that this fractional-step
scheme requires the evaluation of pressure at each step. This can be done with
a pressure Poisson equation, see the next remark, with no evaluation of the
end-of-step velocity.

Remark 6.20 (Pressure Poisson equation). Observe that the equations of the
second step can be reformulated in terms of a Poisson equation for the pressure.
In fact, applying the divergence operator to the first equation in (6.40), since
V • vn+1 = 0, we obtain the following Neumann problem for the pressure:

n - Vpn+1 =0 on T.

Once the end-of-step pressure pn+1 is determined, the end-of-step velocity
vn+1, if needed, can be computed by the explicit relation (6.41), that is the first
equation in (6.40).
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The Neumann boundary conditions for the end-of-step pressure are obtained
using (6.41) in the boundary condition of the second step, namely n • v n+l =
n' vn+1

D and using the fact that vlml = v£>+* from the first step. There has
been some controversy on these non-physical boundary conditions for pressure.
Note that the exact pressure for sufficiently smooth conditions does not verify
homogeneous boundary conditions (see Gresho and Sani, 1987). Together with
the weak representation of the tangential velocity on the boundary, the non-
physical boundary conditions for the pressure represent a potential drawback
of the Chorin–Temam method.

Remark 6.21 (Viscosity splitting fractional-step method). To alleviate the
difficulties regarding the imposition of Dirichlet boundary conditions in the sec-
ond step of the Chorin–Temam projection method, Blasco, Codina and Huerta
(1997; 1998) introduced a viscosity splitting fractional-step method in which
the second step avoids using the projection idea. Instead, they introduce a dif-
fusion term in the momentum equation of the second step, which consequently
loses its inviscid character responsible for preventing control of the prescribed
tangential component of the velocity at the boundary. The second step then
consists of determining the end-of-step velocity vn+l and pressure pn+l as
being the solution of

1-1
A j * V~ "Hit I ' ' r

V • vn+1 =0 in fi,

vn+l = v£+1 on T.

When combined with the equations (6.37) of the first step, this formulation
of the second step allows the imposition of the original Dirichlet boundary
conditions in both phases of the fractional-step method. This method, however,
requires finite elements passing the LBB condition.

Remark 6.22 (The LBB condition). It was initially thought that Poisson-based
projection techniques could be used with velocity-pressure pairs not satisfying
the LBB condition and that this family of methods could thus be considered as
pertaining to the class of stabilized finite element methods. This is unfortunately
not always true. Guermond and Quartapelle (1998a; 1998b) performed an
in-depth study of the stability and convergence properties of fractional-step
projection methods in which the pressure/incompressibility step is recast in
terms of a Poisson equation for the pressure. Their conclusion is that in the
case of the incremental projection scheme, the velocity-pressure pairs must
satisfy the LBB compatibility condition to obtain non-oscillatory numerical
results. By contrast, when the total pressure is employed in the second step,
they found that equal-order interpolations could be safely used, provided the
time step is not too small with respect to the spatial mesh size, in the sense that
A£ > chk.k being the degree of the velocity interpolation and h a measure
of the mesh size. Unfortunately, the non-incremental projection method has
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inferior convergence properties with respect to the incremental scheme. Minev
(2001) presents a discussion on which fractional-step methods require an LBB
compliant approximation and which schemes do not.

6.7.3.2 Algebraic splitting The Chorin—Temam projection method, which is
based on the Helmholtz decomposition principle, can be viewed as a physical splitting
of the original incompressible Navier—Stokes equations. As an alternative method
for solving the Navier—Stokes problem in a sequence of simpler steps, Perot (1993)
and Abdallah (1995) in a finite volume context and more recently Quarteroni, Saleri
and Veneziani (2000) in the finite element context introduced an algebraic splitting.
It is based on an incomplete (or approximate) block LU factorization of the original
partitioned matrix system arising from the space-time discretization of the unsteady
Navier—Stokes equations (6.35), namely

B
GT

where f * accounts for the r.h.s. term in the first equation in (6.35) and all the known
terms (evaluated at tn) resulting from the time discretization of the momentum equa-
tion. To simplify the notation, we have posed

B = ~M + (K + C(vn+1)). (6.44)

As already mentioned in Section 6.5.5 for the Stokes problem, the partitioned system
(6.43) could in principle be solved in two steps (6.26) and (6.27), namely

I (GT B-1 G) pn+1 - GT B-1 r - h,

[Bun+1 =f* -Gpn+1.

The second equation is obtained making the first equation in (6.43) explicit with
respect to un+1 and the pressure equation, which is solved first, is obtained after this
expression for un+1 is introduced in the second equation of (6.43).

Unfortunately, this strategy is computationally unaffordable in engineering appli-
cations. The reduction in computational complexity is usually limited to replace B-1

by a simpler matrix. From (6.44) we have

B-1 = Aifl + AflVr1 (K + C(vn+L)} ) MC(vn+l))J

The standard approach is to use the first-order approximation of matrix B-1 with
respect to At given by

Since, by contrast with matrix B-1, matrix M-1 remains invariant during the tran-
sient calculation, a significant reduction of the computational effort is obtained by
this approximation. Higher-order expressions can also be devised, the second-order
approximation is

H =



UNSTEADY NAVIER—STOKES EQUATIONS 305

and the third-order one becomes

H = A*(l - AtfVT^K + C) + At2(M~1(K + C)f}M~l,\ /

where C is non-symmetric and varies with time. Note that only the inverse of the
mass matrix is required (recall that the lumped mass matrix is a good approximation
of the consistent one).

Perot (1993) and Quarteroni et al. (2000) generalize this approach using the exact
LU factorization of the matrix in (6.43),

B G\ ( B 0
GT

This process is indeed equivalent to a direct solution of system (6.43). Its interest lies
in the fact that suitable approximations of matrix B ~l allow the construction of more
economic solution schemes. Now B"1 can be replaced by two simpler matrices,
one in the L-block, HI, and one in the U-block, H2. Thus, the original matrix is
approximated by

B 0 Wl H 2 G \ _ / B BH2G \
GT -GTH!G o I ~GT G T H 2 - H 1 G - (6'45)

From this inexact factorization three strategies become apparent.
First, if H = H1 = H2 the previously discussed methodology is recovered. Note

that this strategy is the only one that preserves mass because the lower-left block of the
inexact factorization is a null matrix, see (6.45). The momentum equation, however,
is modified by the fact that H2 ^ B-1. Projection fractional-step methods, such as
the ones discussed in the previous section, belong to this strategy.

Second, if H2 = B-1 and H1 ^ H2 momentum is preserved because the mo-
mentum equation is not modified but the mass conservation equation is modified.
Quasi-compressible (i.e., pressure-stabilized, penalty, etc.) methods belong to this
category, see for instance (6.28) and (6.29).

Third, if H2 ^ B-1 and H1 ^ H2 a more general strategy is devised where both
the momentum and continuity equations are perturbed, see for instance Section 6.7.2.

The inexact factorization (6.45) in equation (6.43) allows the computation of u n+1

and pn+1 by means of the following sequence of steps:

fun+1+H2Gpn+1=uJ+1 .
U-step < L1 J_1

 int
I -r^n+l nn+l
IP "Pint >

or, equivalently

B u£+1 = f * (intermediate velocity computation).

GTHiGpn+1 = G7!!?^1 — h (pressure computation).

un+1 = u^1 — H2G pn+1 (end-of-step velocity computation).

A number of other schemes based on the inexact factorization (6.45) are investigated
by Quarteroni et al. (2000).
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6.8 APPLICATIONS AND SOLVED EXERCICES

6.8.1 Stokes flow with analytical solution

In order to illustrate the behavior of selected mixed finite elements in the solution
of stationary Stokes flow, see Section 6.5.2, we consider a two-dimensional problem
in the square domain ft =]0. l[x]0.1[, which possesses a closed-form analytical
solution. The problem consists of determining the velocity field v = (v i. v?) and the
pressure p such that

-vV2v + Vp = b in ft.

V-v = 0 in ft,

v = 0 on T.

where the fluid viscosity is taken as v — 1. The components of the body force 6 are
prescribed as

61 = (12 - 24y) x4 + (-24 + 48y) x3 + (-48y + 72y2 - 48 y3 + 12) x2

+ (-2 + 24y-72y 2 +48y 3 )x + l - 4 y + 12y2-8y3,

62 = (8 - 48y + 48 y2) x3 + (-12 + 72y - 72y2) x2

+ (4 - 24y + 48y2 - 48y3 + 24y4) x - 12y2 + 24y3 - 12y4,

where, for simplicity, we have used in this 2D problem the notation (x. y) : = (x i. x?).
With this prescribed body force, the exact solution is

vi(x,y) = x2(l- x)2 (2y - 6y2 + 4y3),

v2(x,y) = -y2 (1 - y)2 (2x - 6x2 + 4x3),

p(x.y) = x(l -x).

The square domain is discretized with different uniform meshes: 20 x 20 QIP0
elements, 20 x 20 Q1Q1 elements, 40 x 40 Mini elements, and finally 10 x 10
Q2Q1 elements (the characteristic distance between velocity nodes is kept constant).
Figures 6.3 and 6.4 show the pressure field and velocity vectors obtained with the
various elements and a Galerkin formulation. Clearly, elements Q1P0 and Q1Q1,
which do not satisfy the LBB compatibility condition, exhibit a spurious pressure
response. However, one should note that they deliver an acceptable velocity response,
see the excellent discussion by Brezzi and Fortin (1991, Sec. II.3.3) entitled "Is the
inf-sup condition so important?". The results obtained with the Mini element and
the Q2Q1 element, which satisfy the LBB condition, deliver good answers for both
velocity and pressure.

These conclusions are clarified in the convergence plots, see Figures 6.5 and 6.6,
where uniform meshes have been used with characteristic lengths: h = 1/10, 1/20,
1/30, and 1/40. The velocity field converges to the exact solution for all the elements
as shown in Figure 6.5 and the convergence rates coincide with the theoretical ones.
This is not the case for the pressure field. Figure 6.6 shows two plots, the left one
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Fig. 6.3 Analytical Stokes: Pressure and velocity for Q1P0 (left) and Q1Q1 (right).

shows the variation of the maximum error norm for all four elements, note that the
error scale ranges from 10-6 to 106 (one trillion orders of magnitude). The plot on the
right only shows the LBB compliant elements and clearly indicates that the pressure
field converges to the exact one.

6.8.2 Cavity flow problem

This example has become a standard benchmark test for incompressible flows. We
will show here results for the Stokes and Navier—Stokes problems. Figure 6.7 shows
a schematic representation of the problem statement. It models a plane flow of an
isothermal fluid in a square lid-driven cavity. The upper side of the cavity moves in
its own plane at unit speed, while the other sides are fixed.

The boundary conditions are indicated in Figure 6.7. There is a discontinuity
in the boundary conditions at the two upper corners of the cavity. Two cases can
be envisioned: the two upper corners are either considered as belonging to the top
mobile side (leaky cavity), or they are assumed to belong to the fixed vertical walls
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Fig. 6.4 Analytical Stokes: Pressure and velocity for Mini (left) and Q2Q1 (right).

(non-leaky). The former case is adopted here. It introduces a singulary in the pressure
field precisely at those two upper corners.

Finally, it should be noticed that Dirichlet boundary conditions are imposed on
every boundary in this example. As commented earlier this implies that pressure is
known up to a constant (p G £2(^)7^). Thus at an arbitrary point, the lower left
corner of the cavity, the reference value p = 0 is prescribed.

First, we solve the lid-driven cavity for the Stokes problem and the standard
Galerkin formulation. The main features in this case are the symmetry with re-
spect to the vertical centerline and the pressure singularity at the two upper corners.
In fact, no shear layers are present in the Stokes problem, but results (the pressure
jump between both corners) improve if a nonuniform mesh is employed. The cavity
is discretized with a nonuniform mesh of 30 x 30 QIP0 elements, 30 x 30 Q1Q1
elements, 60 x 60 Mini elements, and finally 15 x 15 Q2Q1 elements. Thus, all
these meshes have the same characteristic element size: h = 1/30.

Figure 6.8 shows the symmetric streamlines for the Q2Q1 element. This dis-
tribution of streamlines is very similar to the distributions obtained for the other
elements. Figure 6.9 shows the pressure field for the non LBB compliant elements.
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1/20
Characteristic element size

Fig. 6.5 Analytical Stokes: velocity error versus element size.

Characteristic element s

Fig. 6.6 Analytical Stokes: pressure error versus element size.

As expected they present inaccurate pressure results. Both the Q1P0 and the Q1Q1
elements present oscillations which are more pronounced in the corners. The element-
to-element oscillations are more obvious on uniform meshes. Both the Mini and the
Q2Q1, which are LBB compliant, show, as expected, reasonable results for pressure,
see the corresponding pressure fields in Figure 6.10.

The stationary Navier—Stokes solution, which is the objective now, is entirely
characterized by the Reynolds number,

Re —

v being the kinematic viscosity of the fluid. The reference velocity used in the
Reynolds number is the velocity of the mobile side: Vref = 1. The reference length is
the side of the cavity: Lref = 1. The influence of the Reynolds number can be clearly
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Fig. 6.7 Lid-driven cavity: problem statement with boundary conditions and schematic
discretization with Q2Q1 elements. Dots indicate velocity nodes and circles denote pressure
nodes.
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Fig. 6.8 Stokes cavity flow: streamlines for the Q2Q1 element.
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Fig. 6.10 Stokes cavity flow: pressure for Mini (left) and Q2Q1 (right) elements.

seen in Figure 6.11 where the velocity profile at the vertical centerline is depicted for
the Stokes flow and for Navier—Stokes with Re = 100, Re = 400 and Re = 1000. As
the Reynolds number increases boundary layers are more obvious and the variations
in the velocity profile become sharper.

We show velocity and pressure results for Reynolds numbers of 100 and 1000.
Note that computations are performed using the standard Galerkin finite element
method. Stabilized formulations, see Section 6.7.2, must be employed for larger
values of the Reynolds number or coarser meshes. An iterative technique (Picard or
Newton-Raphson methods) must be employed to iteratively solve the resulting system
of nonlinear algebraic equations, equations (6.32).

Results for the cavity flow are displayed in graphical form in Figures 6.12 and
6.13 which allow us to visualize the streamlines and the pressure response. The value
and position of the main vortex are indicated in Table 6.2; a comparison with some
reference solutions from the literature is also indicated. A satisfactory agreement is
observed for all values of the Reynolds number.

As can be seen in these figures and in the table, the position of the main vortex
moves towards the center of the cavity when the Reynolds number increases. The
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0.4 0.6 0.8

Fig. 6.11 Stokes cavity flow: velocity profiles at the vertical centerline for Stokes and
Navier—Stokes with different values of Re.

Table 6.2 Position and strength of the cavity main vortex as a function of Reynolds number.

Square cavity x\ x2

Re = 100

Re = 400

Re = 1000

Present simulation
Burggraf (1966)
Tuann and Olson (1978)

Present simulation
Burggraf (1966)
Tuann and Olson (1978)
Ozawa (1975)

Present simulation
Ozawa (1975)
Goda (1979)

0.62
0.62
0.61

0.568
0.560
0.506
0.559

0.540
0.533
0.538

0.74
0.74
0.722

0.606
0.620
0.583
0.614

0.573
0.569
0.575

Stream Function

0.103
0.101
0.104

0.110
0.101
0.1213
0.1083

0.110
0.118
—

development of a secondary vortex in the right bottom corner of the cavity becomes
progressively apparent and a third vortex appears at the lower left corner.

Elevated velocity gradients develop near the cavity walls for large values of the flow
Reynolds number. This generates non-physical oscillations in the Galerkin solution
for the velocity. A stabilized formulation would then be required, see Section 6.7.2.
Solutions of the lid-driven cavity problem obtained with stabilized finite element
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Fig. 6.12 Cavity: Mini element, streamlines and pressure for Re = 100 (top) and 1000
(bottom).

formulations are reported by Tezduyar et al. (1992), Franca and Frey (1992), Hannani,
Stanislas and Dupont (1995), among others.

6.8.3 Plane jet simulation

As an example of a truly transient situation, a plane jet problem is now considered in
which the flow domain is the right half-space, namely {x \ x1 > 0, — oo < #2 <oo}.
The computational domain is limited to the square defined by ]0, l[x]0,1[, which is
discretized by a 16 x 16 uniform mesh of Q2Q1 elements.

The jet aperture is centered at x = (0.0, 0.5) and is 1/16 wide. The jet profile
is parabolic with a maximum velocity of one. The fluid viscosity is taken to be
v = 5 x 10-4 and its density p = 1 (non-dimensional variables are used). The
boundary conditions simulating the actual flow domain are as follows:
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Fig. 6.13 Cavity: Q2Q1, streamlines and pressure for Re = 100 (top) and 1000 (bottom).

o On the inflow side, x1 = 0, Dirichlet conditions for the velocity are imposed.
The vertical component of the velocity is prescribed to be zero, in addition to
the obvious conditions on the horizontal component.

o On the other sides, we want to simulate the situation at the outlet of the com-
putational domain, that is open/artificial boundary conditions. The issue of
open boundary conditions for the Navier—Stokes equations is still open and
has been avoided in this text. It is however accepted, in general, that a good
alternative is to impose on the primary variables the condition n • V(-) = 0.
In the context of the fractional-step method, such a boundary condition is easy
to implement. In the first step the homogenous natural boundary condition is
simply v(n • V)v = 0, which imposes the desired open boundary condition on
the velocity. Note that in 2D and with reference to a local system of Cartesian
axes (n, r), this is simply

dvn

dn
and

dn
- =0.
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Fig. 6.14 Streamlines for plane jet problem

If the pressure Poisson equation is employed in the second step, see Remark
6.20, again the homogenous natural boundary condition, n • Vp = 0, imposes
the desired open boundary condition on the pressure.

The Chorin-Temam projection method described in Section 6.7.3.1 is used for
marching in time. The idea is to present a solution strategy that could easily be
programmed by the interested reader. With this in mind, the computational schemes
have been selected so as to be characterized by a very simple algorithmic structure.
The streamlines at different instants are shown in Figure 6.14.

The fluid is at rest at t — 0. The explicit Euler scheme is used for time integra-
tion of the first-step equations (although a backward Euler method can also be used
to avoid instabilities and would induce similar results). To make explicit schemes
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Fig. 6.15 Pressure contours for plane jet problem

efficient, they are combined with a lumped (diagonal) mass representation obtained
by the classical row-sum technique. The backward Euler method is employed in the
necessarily implicit second step (pressure/incompressibility step). As will be appar-
ent from the numerical results, in addition to its simplicity, the proposed strategy is
capable of producing accurate results. The time step is taken to be At = 0.01 as
done by Laval and Quartapelle (1990).

The flow pattern, particularly the vortex creation close to the jet aperture, is repre-
sented at different instants by the streamlines in Figure 6.14. The corresponding pres-
sure contours are shown in Figure 6.15. The results are in good agreement with those
obtained by Laval and Quartapelle (1990) using a fractional-step Taylor—Galerkin
method. Their method consists of three phases as follows. A pure convection phase
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is solved first using a second-order explicit Taylor—Galerkin method. This is followed
by a viscous diffusion phase solved using the forward Euler method. Finally, the pres-
sure/incompressibility phase is solved using the backward Euler scheme. The present
results can also be compared with those obtained by Blasco, Codina and Huerta (1997)
using a predictor-multicorrector algorithm.

6.8.4 Natural convection in a square cavity

To illustrate the use of the Chorin—Temam fractional-step method in another incom-
pressible flow problem, we shall describe the splitting-up approximate solution of
unsteady natural convection problems. Such problems involve a coupling between
the Navier—Stokes equations describing the fluid motion and the thermal energy equa-
tion governing the space-time evolution of the temperature. The forces which induce
natural convection are in fact spatially variable gravity forces generated by (buoy-
ancy) density variations in the fluid due to the non-uniformity of the temperature.

6.8.4.1 The Navier—Stokes and temperature equations In natural con-
vection problems the mathematical description of fluid motion is given by the follow-
ing form of the Navier—Stokes equations:

g(vt + (vV)v) = V-a + gb innx]0,T[, (6.46)

where
&=(1 - /9 (T-T 0 ) )0 (6.47)

is the gravity force per unit mass derived on the basis of Boussinesq approximation,
vector g denotes the gravity field, /? is the coefficient of thermal expansion of the
fluid, T is the temperature field, TO is the reference temperature, and Q is the reference
density of the fluid (i.e., the fluid density corresponding to the reference temperature,
when T = T0).

The fluid is assumed incompressible according to Boussinesq approximation. That
is, its density is assumed constant, except in the gravity force term where it depends
on temperature according to the indicated linear law, see (6.47).

Under the usual assumption of a Newtonian fluid, the components a ij of Cauchy
stress are linearly related to the strain rate by Stokes' law. The incompressibility con-
dition is expressed in the standard form V • v = 0, and the Navier—Stokes equations
(6.46) are completed with the usual initial and boundary conditions.

The Boussinesq body forces, see (6.47), introduce a coupling between the Navier—
Stokes equations and the thermal energy equation

0c(Jt + v • VT) = V • (fcVT) + Q inftx]0,r[. (6.48)

Here, c denotes the specific heat of the fluid at constant volume, k is the thermal con-
ductivity (assumed isotropic in this case) and Q represents volumetric heat generation.
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Equation (6.48) combined with boundary conditions such as

T(x, t) = TD(x, t) on rj, x]0, T[,

where TD represents a prescribed temperature, while qN denotes a prescribed normal
heat flux. The initial condition T(x,0) = T0(x) for all x € D, completes the initial
boundary value problem for the temperature.

6.8.4.2 A fractional-step method for Navier—Stokes and temperature
The implicit character of pressure in an incompressible fluid precludes the use of
purely explicit time integration algorithms in the Navier—Stokes equations. As seen in
Section 6.7.3, it is nevertheless possible to take advantage of the algorithmic simplicity
of explicit time-stepping schemes by using a fractional-step approach. That is, the
convective and Boussinesq terms could be evaluated explicitly. Here a simple example
is shown and to simplify the exposition, we assume that Dirichlet conditions for the
velocity are prescribed on the whole boundary of the fluid domain.

The first step considers the convective, viscous and Boussinesq terms of equation
(6.46), see also (6.37). Thus, the first-step equation reads

vt + v* Vv - V • 2i/Vsv = 6.

Note that this equation is normalized by the reference density, g, of the fluid. The
simplest option for this first step is an explicit time integration scheme. For instance,
we can use the explicit Euler method or the second-order Adams—Bashforth method
described in Section 5.3.1. The result is an intermediate velocity field v n+1

int , satisfying
the Dirichlet boundary conditions, that is vn+1int = w£>+1 .

The second step of the time integration of the Navier—Stokes equations is the
pressure/incompressibiblity step. The end-of-step velocity field v n+1 is determined
adding the intermediate velocity vn+1

int and the effect of the pressure gradient. Recall
that pressure is such that the end-of-step velocity is solenoidal. Time integration
is necessarily implicit and the simplest algorithm is given by the backward Euler
method, see equations (6.40).

A two-step procedure can also be used to update temperature from Tn to Tn+1 .
The convective term is integrated in the first step and the diffusion and source terms
in the second one, see equation (6.48). Thus, the first step reduces to the hyperbolic
equation

Jt + v • VT = 0.

The third-order explicit Taylor-Galerkin method, see Section 3.6.2, can be used for
the time integration of this equation. An intermediate temperature field, Tint, is then
obtained. Since this is a pure convection equation Dirichlet boundary condition
Tint = Tn+1

D are only prescribed on the inflow portion of F ̂  (i.e., where n • v < 0).
The second step, which accounts for the diffusion and source terms, reads
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Fig. 6.16 Natural convection: problem statement and discretization.

The complete (Dirichlet and Neumann) boundary conditions are imposed. In this
parabolic phase an implicit time-stepping algorithm is to be preferred since the stable
time step for explicit methods decreases with the square of the mesh size. For instance,
the second-order Crank—Nicolson method can be a reasonable choice.

6.8.4.3 The numerical example The classical test problem of a differentially
heated square cavity is chosen to illustrate the use of the fractional-step method for
solving natural convection flows in enclosures.

The problem statement is depicted in Figure 6.16. At the initial time, a fluid at
uniform temperature TO = 0 is at rest in a square cavity with unit sides. At the start
of the calculation, the temperature of the left wall of the cavity is suddenly lowered
by 0.5, while the temperature of the right wall is increased by the same quantity. The
horizontal walls are assumed to be thermally insulated (zero heat flux). No-slip and
no penetration velocity boundary conditions are prescribed on all walls.

The motion induced by natural convection is governed by two dimensionless num-
bers, the Rayleigh and the Prandtl numbers defined by

Ra =
g{3L?e{ AT

and
f K

where g is the gravitational acceleration, ft the coefficient of thermal expansion, AT
the temperature difference between the hot and cold walls, v denotes the kinematic
viscosity and K is the thermal diffusivity of the fluid. The reference length is L ref = 1,
the length of the cavity side.
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Fig. 6.17 Natural convection: streamlines in the thermal cavity for different Rayleigh num-
bers and Pr = 1.

The problem is symmetric with respect to the center of the cavity. This property can
be exploited to reduce the cost of the simulation or to test the quality of the numerical
results. We select the second option. The finite element computation is performed
using the non-uniform mesh of 8 x 8 Q2Q1 elements for the mixed interpolation of
velocity and pressure, see Figure 6.16. A biquadratic interpolation is used for the
temperature. The time integration based upon the fractional-step approach described
in Section 6.8.4.2 is used until a steady state is reached.

The results are for a Prandtl number of one and Rayleigh numbers from 103 to 106.
The development and the structure of the flow vary considerably with the Rayleigh
number. The main characteristics of the flow are illustrated in Figures 6.17 and 6.18:
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Fig. 6.18 Natural convection: isotherms in the thermal cavity for different Rayleigh numbers
and Pr = 1.

1. A secondary flow develops at a Rayleigh number situated between 104 and 105.
2. A boundary layer appears progressively in the vicinity of the vertical walls of

the cavity.
3. The secondary flow evolves at the center of the cavity in the form of "eyes of

a cat".

The computed streamlines are plotted in Figure 6.17. For Ra < 105, the flow is
mono-cellular. The fluid rises along the hot side of the cavity (right wall) and comes
down along the cold wall. For Ra = 105, the development of a secondary flow starts
in the central portion of the cavity. The circulation direction of the secondary flow
is the same as that of the base flow. The value of the stream function at the center
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Table 6.3 Stream function values at the center of the thermal cavity

Rayleigh number

Present simulation
Heinrich et al. (1978)
Marshall et al. (1978)

(8x8)
(4 x 4)
(8 x 8)

103

1.19
1.18
—

104

5.15
5.13
5.12

105

9.74
9.44
9.54

106

17.99
—

17.32

of the cavity gives a measure of the importance of the recirculation. The results are
displayed in Table 6.3 in comparison with other simulations from the literature.

The isotherms in the cavity are displayed in Figure 6.18. At low values of the
Rayleigh number they are practically straight lines, in accordance with a diffusion-
dominated heat transfer process within the cavity. When the Rayleigh number in-
creases, the convective effects become more and more important. The isotherms
deform progressively and take an S shape. The distortion of the isotherms generates
high temperature gradients near the vertical walls of the cavity.
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Index

Accuracy, 99
Acoustic approximation, 188-189
Adams–Bashforth method, 212, 226, 318
Added mass concept, 191
Advection, see convection
Advective form, 81
Algebraic splitting, 213, 304
Amplification factor

0 family methods
convection–diffusion–reaction, 225
least-squares, 121
pure convection, 102

exact, 100–101
explicit Runge–Kutta methods, 217
implicit multistage schemes, 230
Lax-Wendroff method, 102
Lax–Wendroff method with diagonal mass, 103
leap-frog method, 102
numerical, 101
Fade schemes, 228
semi-Lagrangian scheme, 89
stability, 101
stabilized schemes, 238
summary for pure convection, 129
third-order Taylor–Galerkin method, 110
two-step Taylor–Galerkin method, 115

Anisotropic balancing diffusion, 75
Anisotropic balancing dissipation, 57

Approximate diagonalization, 176
Approximate Riemann solvers, 168
Arbitrary Lagrangian–Eulerian (ALE), 3, 5

conservation equations, 18
examples, 196
fluid-structure interaction, 192
fundamental equation, 11
kinematics, 8

Artificial diffusion
linear, 42, 49, 55-57, 75, 142, 148, 168, 178,

258, 261, 297
nonlinear, 184

See also shock-capturing techniques
Artificial viscosity, 148, 177-179, 183

See also artificial diffusion, shock-capturing
techniques

B

Backward Euler, 89, 92, 211, 298
Balancing diffusion, 55–56
Best fit, 28
Boundary conditions, 19, 22

convection—diffusion, 34, 210
Dirichlet: computational aspects, 28, 31
Euler equation, 160, 165
fluid-structure interaction, 189, 193
fractional-step method, 297-302
imposing tractions, 270
Laplace form, 278-279
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least-squares formulation, 255
Navier-Stokes equation, 270, 275, 278-279, 294
open/artificial, 313
pure convection, 34, 81, 94
stress-divergence form, 278–279
subsonic/supersonic, 166

Boundary value problem
convection—diffusion, 34–35
Poisson equation, 23–25, 27
stationary Stokes problem, 275
Steady Navier—Stokes problem, 293

Boussinesq approximation, 317
Broken space, 124, 171
Bubble function stabilization, 67, 70
Buoyancy driven flow, 317
Burgers' equation, 110, 149–154, 199, 250–252
Butcher array, 217

Cauchy problem, 99, 149
Cauchy stress, 14, 159, 190, 268-269, 275,

277-278, 282
Cea's lemma, 27
Centered difference operators, 100
Central difference method, 39, 41, 43, 96, 103, 106
CFL property, 103, 110
Characteristic-based methods, 80, 87, 90–91, 176
Characteristic-based split (CBS) algorithm, 187
Characteristic direction, 82
Characteristic Galerkin method, 89, 91, 110
Characteristic lines, 82–87, 149–152, 154–156,

163-165, 173
Characteristic variables, 164, 169
Chorin-Temam projection method, 266, 275,

298–303, 315
Classical solution, 24
Coercive, 25-26, 211
Condition for uniqueness, see uniqueness
Conditionally stable, 225
Conservation form

ALE equations, 18
convection—diffusion, 34, 36
energy, 17
Euler, 159–161
mass, 13
momentum, 15
pure convection, 81, 85

Conservative discretization schemes, 176
Consistency, 28, 98
Consistent mass matrix, 39, 95–96, 104–105, 131,

182-183, 223
Consistent stabilization, 59–60, 233-234
Constitutive law, 16, 159, 275-277
Constrained equilibrium problem, 275
Continuity equation, 13
Continuous functional form. 25-26

Convection—diffusion
exact nodal solution, 61
steady

Galerkin, 36
strong form, 34
weak form, 36

unsteady
semi-discrete form, 222-223
strong form, 210

Convection matrix, 37-39, 46, 55, 72, 95, 223, 294
Convective form, 81
Convective transport problems, see pure

convection
Convective velocity, 10
Convergence of

Galerkin, 27–28
time-stepping schemes, 98

Courant number, 101
Crank-Nicolson, 92, 211, 213, 222
Crosswind diffusion, 57–58, 185
Crouzeix-Raviart element, 285–286
Cubic Hermite interpolation, 88, 91, 110, 123, 256

D

Damping error, 101
Deviatoric stress tensor, 268, 276, 278
Difference equation, 44
Diffusion matrix, 37–39, 46, 72, 223
Diffusion number, 101
Diffusion of Galerkin (negative), 43
Dimensionless reaction, 101
Dimensionless wave vector, 100
Discontinuous Galerkin, 124, 141, 170, 208
Divergence operator (discrete), 282
Douglas–Rachford method, 214
Driven cavity problem, 307

E

Eigenvalues of Euler projection matrix, 163
Energy conservation equation. 17
Energy norm, 26
Enthalpy, 17, 160v161
Entropy, 164–165

condition, 149, 152–154, 156
solution, 153–154

Equation of motion, 13, 15
Equivalence of penalty and mixed methods,

291-292
Euler equations, 159

ID, 162
2D, 162
diagonalization, 164–165
Galerkin, 167
non-conservative form, 161
strong form, 159–162
subsonic/supersonic boundary conditions. 166
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Euier method, 89, 92, 211, 298
Eulerian description of motion, 4
Expansion fan, 152
Explicit scheme

Adams—Bashforth, 212
Euler, 89, 92, 211, 298
fourth-order leap-frog, 113
Lax—Wendroff, 93
leap-frog, 93
linear multistep, 212
Fade, 219
Runge—Kutta, 217
stability, 225
Taylor—Galerkin, 108, 157
two-step Taylor—Galerkin, 114, 158

External boundary, 166

Finite element interpolating space, 22
Finite increment calculus, 66
Fluid-structure interaction, 187

acoustic approximation, 188-189
ALE formulation, 192
boundary conditions, 189, 193
interface conditions, 195
large-displacement, 191
nonlinear structural response, 191

Flux-limiter, 180–181
Flux representation, 158, 201
Flux vector splitting, 167-168, 170–172, 205-207
Fourier analysis, 99–101, 224, 238

See also amplification factor
Fractional-step methods

for convection-diffusion, 213-215
for Euler equations in ALE description, 193
for Navier–Stokes, 275, 297-300, 302-303,

305, 314
nearly incompressible flows, 186

Full upwind, 50
Functional spaces

continuous and differentiable functions, 19
finite dimensional, 22
for Euler, 171
for Navier–Stokes, 273-274
for transient problems, 95
least-squares, 237, 254
Sobolev, 20–21
solenoidal fields, 274
time-discontinuous Galerkin, 127
trial and test functions, 21–22

Galerkin orthogonality, 27
Galerkin/Least-squares, 60, 63, 233, 236

Fourier analysis, 238
space-time, 126, 128, 175, 241

Stokes, 287
Generalized (weak) solution, 149
GLS, see Galerkin/Least-squares
Godunov's theorem, 118
Gradient operator (discrete), 282
Grid velocity, 10
Group representation, 159

H

Helmholtz decomposition principle, 275, 298
Hemker problem, 78
High-resolution schemes, 118, 177, 179–180, 182
Homogeneous functions, 162

I

Implicit scheme
backward Euler, 89, 92, 211, 298
Crank-Nicolson, 92, 211, 213, 222
Galerkin, 92
linear multistep, 212
Fade, 220
Runge–Kutta, 217, 220

Incremental projection, 301
Inf-sup condition, 285

See also LBB condition
Inflow boundary condition, 34, 81, 166
Internal energy equation, 16
Interpolating space, 22
Inviscid fluid, 16

Jacobian matrix (Euler equations), 162-163,
169–170

Jump condition, 149
See also Rankine–Hugoniot jump condition

K

Kinematic pressure, 270, 278
Kinematic viscosity, 270, 278
Kinematical description, 4–5

Lagrange—Galerkin method, 80
Lagrange—multipliers technique (boundary

conditions), 32, 194
Lagrangian description of motion, 4
Lapidus viscosity, 179
Lax equivalence theorem, 98-99
Lax-Milgram lemma, 25
Lax-Wendroff method, 93, 97-98
LBB condition, 284–286, 303
Leap-frog method, 93, 98
Least-squares-based spatial discretization, 120

0 family of methods, 121
Taylor least-squares method, 122
transient problems, 254
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unsteady convection-diffusion, 237
Lid-driven cavity problem, 307
Limiter schemes

flux, 180–181
slope, 180–181

Linear multistep method, 212
Lobatto implicit Runge–Kutta methods, 220–221
Lumped-mass matrix, 39, 103, 131, 182-183

M

Mach number, 161
Mass-conservation equation, 13
Mass matrix

added mass, 191
consistent, 39, 95–96, 131, 182-183, 223
lumped, 39, 103, 131, 182-183

Material surface, 13, 15
Material time derivative, 7–8, 84
Mesh Peclet number, 40, 185
Method of lines, 92
Mini element, 285–286
Mixed finite element methods, 273, 279, 284

equivalence with penalty formulation, 291
Modified equation method, 43, 99, 105
Modified weighting function, 55
Momentum equation, 13
Monotone, 117
Monotonicity-preserving schemes, 117–118

See also high-resolution schemes

N

Natural convection, 317, 319
Navier-Stokes equations, 270

dimensionless form, 271
steady

Galerkin, 293
matrix problem, 293
strong form, 293

unsteady
fractional-step methods, 297-300
Galerkin, 295
stabilized, 296
strong form, 294

Nearly incompressible flows, 186
Newtonian fluid, 268
Normal to a discrete interface, 196

O

Open/artificial boundary conditions, 313
Outflow boundary condition, 166

Fade approximations
explicit, 218–219
implicit, 220

Peaceman—Rachford method, 214

Peclet number, 40, 185
Penalty formulation, 273, 288

equivalence with mixed methods, 291
under-integration, 290

Penalty matrix, 290
Phase error, 101
Plane jet problem, 313
Poisson equation, 23–25, 27
Prandtl number, 319
Pressure Poisson equation, 302
Projection method, 266, 275, 298–303, 315
Propagation speed of the discontinuity, 154–155
Pseudo-viscous pressure, 178
Pure convection

nonlinear, 86
semi-discrete form, 94–96
space—time formulations, 126
spatial discretization

discontinuous Galerkin, 124
Galerkin, 94
least-squares, 120

strong form, 81
time discretization, 92-93

R

Rankine—Hugoniot jump condition, 154, 156, 170,
176

Rarefaction wave, 154
Rate of deformation (or strain rate) tensor, 267
Rayleigh number, 319
Reduced integration, 290–291
Residual decomposition, 176
Reynolds number, 271
Reynolds transport theorem, 12
Riemann problem, 153
Riemann variables, 164
Rotating cone problem, 135
Rotating pulse problem

steady, 250
transient, 246

Runge—Kutta methods, 215–216
explicit, 217
implicit, 217, 220

Saddle point, 273, 277
Schur complement matrix, 283
Second-order Taylor—Galerkin, 98

See also Lax—Wendroff method
Semi-discrete method, 92, 94–95, 222
Semi-Lagrangian method, 80. 87–89
SGS, see sub-grid scale
Shock, 154
Shock-capturing techniques, 177–180, 182, 184
Shock tube problem, 202
Solenoidal velocity field, 274–275
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Solid boundary, 165
Space—time formulation

Galerkin/Least-squares
convection—diffusion, 241
Euler equations, 175
pure convection, 128

pure convection, 126
time-discontinuous Galerkin, 126
time-discontinuous least-squares, 128

Spatial time derivative, 7-8
Speed of sound, 161
Spin tensor, 267
Stability, 98-99

convection—diffusion
0 family methods, 225
explicit Fade methods, 229

explicit methods, 225
pure convection, 130

classical time-stepping schemes, 101
Taylor—Galerkin method, 110
two-step Taylor—Galerkin method, 115

Runge—Kutta, 217
Stabilization matrix, 233-234
Stabilization parameter, 60

convection—diffusion—reaction, 65
convection—diffusion, 64
Euler equations, 174
higher-order finite elements, 65
Navier-Stokes, 297
pure convection, 129
shock-capturing, 185
Stokes, 288
transient convection—diffusion-reaction, 232

Stabilization techniques, 59–60, 168, 231, 233,
241

Galerkin/Least-squares, 63, 128, 175, 236, 287
least-squares, 120–122, 128, 237, 254
Streamline-upwind Petrov—Galerkin, 60, 172,

236, 296
sub-grid scale, 63, 68, 70, 237
variational multiscale, 68

Stabilization
Euler equations, 168, 172, 174–175
Navier—Stokes equations, 296
nearly incompressible flows, 187
steady

convection—diffusion-reaction, 59–60
convection—diffusion, 254

Stokes equations, 287
unsteady

convection—diffusion-reaction, 231, 233,
236—237, 241

convection—diffusion, 254
pure convection, 120–122, 128

Stable problem, 98
Stokes' law, 269

Stokes flow equations, 271
Cauchy stress formulation

stress-strain vector form, 277
strong form, 275
weak form, 275-276

Galerkin, 279
matrix problem, 281
solvability condition, 283
stabilization, 287
velocity-pressure formulation

strong form, 278
weak form, 279

Strain rate tensor, 267
Strain rate vector, 277
Stream function, 272
Streamline-upwind method, 55
Streamline-upwind Petrov—Galerkin, 60–62, 233,

236, 257
Euler equations, 172–173
Navier-Stokes, 297
space-time, 175

Streamline-upwind test function, 58, 75
Stress-strain vector form, 277
Stress-divergence form, 270, 275, 278-279
Sub-grid scale, 64, 68-70, 233, 237
Sub-grid viscosity, 68
Superconvergence, 64
Supersonic boundaries, 166
Supersonic flow, 166
SUPG, see Streamline-upwind Petrov—Galerkin
System of hyperbolic equations, 86

Taylor—Galerkin methods, 107
one-step

fourth-order, 113
second-order, 98, 157
third-order, 108

two-step
fourth-order, 116
second-order, 158
third-order, 114

Taylor-Hood element, 285-286
Taylor least-squares method, 122
Time-discontinuous

Galerkin, 126
least-squares, 128

Total Lagrangian formulation, 5
Total time derivative, 84

See also material time derivative
Total variation diminishing, 118–120, 180–181
Transport equation, 83
Triangulation, 22_

Unconditionally stable, 225
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Uniqueness, 25–26, 149–150, 152–153, 165, 211,
271, 283–285, 298, 300

Updated Lagrangian formulation, 5

Vanishing viscosity, 153–154
Variational principle, 26
Velocity gradient, 267
Viscosity matrix, 281-282, 290

See also diffusion matrix

Viscosity solution, see entropy solution
Von Neumann stability analysis, 99
Vorticity tensor, 267

W

Wave number, 100
Wave vector, 100
Weak (or variational) form, 24
Weak solution, 85, 149, 153
Weighted residual formulation, 24
Well-posed problem, 98




